
Improved Ant Colony Optimization for
Grid Scheduling

D.Maruthanayagam

MCA Department, Gnanamani Collge of Technology, Namakkal, Tamilnadu, India

Dr. R.Uma Rani
Department of Computer Science, Sri Sarada College for Women, Salem,Tamilnadu, India

ABSTRACT:
This paper focuses on applying one of the rapidly growing
non-deterministic optimization algorithms, the ant colony
algorithm in Grid computing. It is growing rapidly in the
distributed heterogeneous systems for utilizing and sharing
large-scale resources to solve complex scientific problems.
Scheduling is the most recent topic used to achieve high
performance in grid environments with several conflicting
objectives. Within this paper, methods have been developed
and applied for scheduling techniques in grid computing. It
aims to find a suitable allocation of resources for each job
with the comparison of ACO and proposed ACO. This
paper, proposes an improved ant colony scheduling
algorithm combined with the concept of RASA. The first
step for this to select a set of computers and a network
connection (switching, routers, Ethernet, Myrinet Etc.,) for
an application. A task algorithm from RASA first estimates
the completion time of the tasks on each of the available grid
resources and then applies the Max-min and Min-min
algorithms. Allocation of resources to a large number of
jobs in a grid computing environment presents more
difficulty than in network computational environments.
This proposed algorithm is evaluated using the simulated
execution times for a grid environment. Before starting the
grid scheduling, the expected execution time for each task on
each machine must be estimated and represented by an
Expected Time calculation. The proposed scheduler allocates
adopt the system environment freely at runtime. This
resource optimally and adaptively in the scalable, dynamic
and distribute controlled environment. Conclude of this
propose depending upon the performance of the grid
systems.

Key words: Grid Computing, Job Scheduling, Heuristic
Algorithm, opportunistic Load Balancing, genetic Algorithms,
Simulated Annealing algorithms and Max-Min Ant system.

I. INTRODUCTION
 In the past few years nature-inspired techniques
have been widely used for various optimization problems
in design, planning, scheduling, communication, etc. One
field, which is receiving increasing interest from several
researchers, is the scheduling problem in Grid Computing
Environment. A variety of heuristic algorithms have been
designed to schedule the jobs in computational Grid. The
most commonly used algorithms are OLB, MET, MCT,
Min-Min and Max-Min. Reduction of makespan (measure
the throughput of the grid system) is the prime aim of grid
scheduling. The ACO becomes very popular heuristic

algorithm to apply for solving grid scheduling problems.
Ant colony algorithm are increasingly being used in
various real-world applications such as the travelling
salesman problem (TSP), the quadratic assignment
problem (QAP), the Job Shop Scheduling Problem (JSP),
telecommunication routing and load balancing, etc. and it
has been shown that they perform well compared to other
non-deterministic algorithms such as genetic
algorithms(GA), simulated annealing(SA), etc.
 Scheduling is a significant research area in Grid
Computing. Many Scheduling algorithms have been
designed and applied in computational grid. However,
those algorithms are not always able to produce efficient
scheduling in heterogeneity computing resources. Often,
skilled personnel who understand the requirements, the
simulation model representations and solve complex
computing scheduling problems efficiently and physical
production issues fill this technical gap. Scheduling
algorithm is a technique of increase the throughput,
Quality of Service (QoS) and reduces the cost during the
job scheduling process for dynamically allocate the
efficient processors. It needs to be done under multiple
objectives and constraints.
 Grid Computing enables aggregation and sharing of
geographically distributed computational, data and other
resources as single, unified resource for solving large
scale compute and data intensive computing application.
Management of these resources is an important
infrastructure in the Grid computing environment. It
becomes complex as the resources are geographically
distributed, heterogeneous in nature, owned by different
individual or organizations with their own policies, have
different access and cost models, and have dynamically
varying loads and availability.
 The conventional resource management schemes are
based on relatively static model that have centralized
controller that manages jobs and resources accordingly.
These management strategies might work well in those
scheduling regimes where resources and tasks are
relatively static and dedicated. However, this fails to work
efficiently in many heterogeneous and dynamic system
domains like Grid where jobs need to be executed by
computing resources, and the requirement of these
resources is difficult to predict. Due to highly
heterogeneous and complex computing environments, the

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

596

chances of faults increases [1], and therefore number of
resources available to any given application highly
fluctuates over time which reduces the performance and
the efficiency. Therefore it is necessary to design a
mechanism for scheduling to improve the efficiency in
such infrastructure. This work focuses on scheduling in a
Grid environment. Grid application performance is
critical in Grid computing environment. So to achieve
high performance there is a need to understand the factors
that can affect the performance of an application due to
Scheduling, which is one of most important factors that
influence the overall performance of application.
 The significance of this research lies in the potential
of the developed ant colony optimization algorithms for
job scheduling in Grid Computing and the associated cost
and time. Further, despite the recent advancements in the
field of scheduling algorithms, the following issues have
not been addressed by other scheduling algorithms
• Opportunistic Load Balancing (OLB) keeps almost

all machines busy all possible time. Yet the solution
is not optimal.

• Minimum Execution Time (MET) creates an
imbalance condition among the machines. Allocating
all the smallest tasks to the same fastest resources.
Hence this solution is static.

• Minimum Completion Time (MCT) takes calculation
of minimum completion time for a job is longer.

• The drawback of Min-Min is that, too many jobs are
assigned to a single grid node. This leads to
overloading among jobs.

• When compare to Max-Min, Min-Min is the best one
because implementation of Max-Min is difficult.

 Most of the algorithms have some drawbacks
compare than ant colony optimization. All of the
algorithms use a classical multi-objective technique:
weighted sum approach or single-objective function to
obtain the optimum solution. Since there is more than one
optimum solution for a multi-objective problem, previous
algorithms are not capable of generating these conflicting
optimum solutions (or trade-off solutions) in a single run.
If all the trade-off solutions need to be found, these
algorithms must be run several times with different
parameter values. Normally these experiments are time
consuming and if they need to be run several times, they
are even more time consuming. Moreover, ant colony
optimization along with Resource Aware Scheduling
Algorithm (RASA) is another important part of this
research area and none of the algorithms are able to
provide reduce the makespan of jobs as well as to find out
the optimal resource in Grid Computing. In this paper, the
above issues are addressed. In addition to these issues, the
paper suggests some modifications to ant colony
optimization and a new Enhanced Ant Colony System
based on RASA in Grid Scheduling for heterogeneous
computing environment.

 The proposed algorithm can be improved using some
form of operating systems, hardware, and software,
different storage capacities, CPU speeds, network
connectivity’s and technologies needs. In this method we
first find the problem resources and those total execution
times equal to the makespan of the solution, and attempt
to move or swap set of jobs from the problem processor to
another resource that has the minimum and maximize of
makespan as compared with all other resources.
 As RASA consist of the max-min and min-min
algorithms and both have no time consuming instructions.
ACO and RASA algorithms incorporate in which intend
to optimize workflow execution times on grids have been
presented here. The comparison of these algorithms in
computing time, applications and resources scenarios has
also been detailed. In dynamic grid environments this
information that can be retrieved from a many servers
includes operating system, processor type and speed, the
number of available CPUs and software availability as
well as their installation locations. The distributed
monitoring system is designed to track and forecast
resource conditions. The n tasks can obviously
intercommunicate. A general model should take into
consideration that the communication phase can happen at
any time with I/O phases. To overcome these difficulties
our new algorithm is proposed.

II. MATERIALS & METHODS

A. Local vs. Global
 The local Scheduling discipline determines how the
processes resident on a single CPU are allocated and
executed; a global Scheduling policy uses information
about the system to allocate processes to multiple
processors to optimize a system wide performance
objective. Grid Scheduling falls into the Global
Scheduling [4].
B. Static vs. Dynamic
 The next level in the hierarchy (under the Global
Scheduling) is a choice between static and dynamic
Scheduling. This choice indicates the time at which the
Scheduling decisions are made. In case of static
Scheduling, information regarding all resources in the
Grid as well as all the tasks in an application is assumed
to be available by the time the application is scheduled.
By contrast, in the case of dynamic Scheduling, the basic
idea is to perform task allocation on the fly as the
application executes.
C. Optimal vs. Suboptimal
 In the case that all information regarding the state of
resources and the jobs is known, an optimal assignment
could be made based on some criterion function, such as
minimum makespan and maximum resource utilization.
But due to difficulty in Grid scenarios to make reasonable
assumptions which are usually required to prove the
optimality of an algorithm, current research tries to find
suboptimal solutions, which can be further divided into
the following two general categories.

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

597

D. Approximate vs. Heuristic
 The approximate algorithms use formal
computational models, but instead of searching the entire
solution space for an optimal solution, they are satisfied
when a solution that is sufficiently "good" is found. The
factors, which govern their decision, are:
• Availability of a function to evaluate a solution.
• The time required evaluating a solution.
• The ability to judge the value of an optimal solution

according to some metric.
• Availability of a mechanism for intelligently pruning

the solution space.

 Heuristic represents the class of algorithms, which
make the most realistic assumptions about a priori
knowledge concerning process and system loading
characteristics. It represents the solutions to the
Scheduling problem, which cannot give optimal answers
and require the most reasonable amount of cost and other
system resources to perform their function. The
evaluation of this kind of solution is usually based on
experiments in the real world or on simulation. Heuristic
algorithms are more adaptive to the Grid scenarios [5].
E. Cooperative vs. Non-cooperative
 If a distributed Scheduling algorithm is adopted, the
next issue that should be considered is whether the nodes
involved in job Scheduling are working cooperatively or
non-cooperatively. In the non-cooperative case, individual
schedulers act alone as autonomous entities and arrive at
decisions regarding their own optimum objects
independent of the effects of the decision on the rest of
system e.g. application-level schedulers. In the
cooperative case, each Grid Scheduler has the
responsibility to carry out its own portion of the
Scheduling task, but all schedulers are working toward a
common system-wide goal.
F. Distributed vs. Centralized
 In dynamic Scheduling scenarios, the responsibility
for making global Scheduling decisions may lie with one
centralized Scheduler, or be shared by multiple distributed
schedulers. The centralized strategy has the advantage of
ease of implementation, but suffers from the lack of
scalability, fault tolerance and the possibility of becoming
a performance bottleneck [8].
 G. Heuristic Scheduling Algorithms
 Many algorithms were designed for the scheduling of
Meta tasks in computational grids is reviewed in this
section. One of the easiest techniques in grid scheduling is
Opportunistic Load Balancing (OLB). It workflow tasks
in Grid environments are difficult because resource
availability often changes during workflow execution.
Opportunistic Load Balancing attempts to improve the
response time of user’s submitted applications by
ensuring maximal utilization of available resources. A
typical distributed system will have a number of
interconnected resources who can work independently or
in cooperation with each other. Each resource has owner
workload, which represents an amount of work to be

performed and every one may have a different processing
capability. To minimize the time needed to perform all
tasks, the workload has to be evenly distributed over all
resources based on their processing speed.
 Heuristic Task Scheduling Algorithm in Grid
computing environment based upon the predictive
execution time of tasks. It obtains a scheduling strategy
by employing mean load as heuristic information and then
selects both the maximum-load and the minimum-load
machines. We reassign tasks between two machines to
raise the load of the machine with lower-load and reduce
that of the machine with higher-load under the mean load
heuristic [6].
 Ant Colony was used to solve many problems such as
traveling salesman problem, vehicle routing problem,
graph coloring problem, etc. using ACO in Grid processor
scheduling problem leads to finding an optimal or near
optimal solution after reasonable amount of time. A new
heuristic function is introduced to lead ants to select best
processor for executing each process. Also a new fitness
function is presented to evaluate the fitness of solutions
founded by each iteration's ants. The pheromone updating
rule is defined so that prompt new iteration ants to follow
the best solutions found in previous iterations.
 H. Opportunistic Load Balancing (OLB)
 Load balancing for a huge no of system is important
problems which have to be solved in order to enable the
efficient use of parallel computer systems. This problem
can be compared to problems arising in natural work
distribution processes like that of scheduling all activities
(tasks) needed to construct a large building. The essential
objective of a load balancing consists primarily in
optimizing the average response time of applications,
which often means maintaining the workload
proportionally equivalent on the whole resources of a
system. The algorithm adopts an observational approach
and exploits the idea of scheduling a job to a site that will
probably run it faster. The opportunistic algorithm takes
into account the dynamic characteristics of Grid
environments without the need to probe the remote sites.
We compared the performance of the opportunistic
algorithm with different scheduling algorithms in a
context of a workflow execution running in a real Grid
environment. The Opportunistic algorithm benefits from
the dynamic aspects of the Grid environment. If a site
happens to perform poorly, then the number of jobs
assigned to this site decreases. Similarly, if a site process
jobs quickly, then more jobs are scheduled to that site.
I. Minimum Execution Time (MET)
 The first available machine is assigned a job with the
smallest execution time. It neither considers the ready time
nor the current load of the machine and also the
availability of the resources at that instant of time is not
taken into account. The resources in grid system have
different computing power. Allocating all the smallest
tasks to the same fastest resource redundantly creates an
imbalance condition among machines. Hence this solution
is static. Since the number of resources is much less than

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

598

the number of tasks, the tasks need to be scheduled on the
resources in a certain order. Many of the batch mode
algorithms intend to provide a strategy to order and map
these parallel tasks on the resources, in order to complete
the execution of these many processor tasks at earliest
time. They can also be applied to optimize the execution
time of a workflow application which consists of lot of
independent parallel tasks with a limited number of
resources [3].
J. Minimum Completion Time (MCT)
 It uses the ready time of the machine to calculate the
job’s completion time (ready time of the machine +
execution time of the job). It calculates the completion
time of current job in the earliest available machines. From
the list, the job with smallest completion time is selected
and is assigned to that machine. This means the assigned
job may have a higher execution time than any other job.
This algorithm calculates the completion time of current
unfinished job in only one earliest available node. But, the
same job may be completed in lesser time in some other
machine which is available at that time.
K. Min-Min
 It starts with a set of unmapped tasks. The minimum
completion time of each job in the unmapped set is
calculated. This algorithm selects the task that has the
overall minimum completion time and assigns it to the
corresponding machine. Then the mapped task is removed
from the unmapped set [4]. The above process is repeated
until all the tasks are mapped. When compared with MCT,
Min-Min considers all the unmapped tasks during their
mapping decision. The smaller makespan can be obtained
when more tasks are assigned to machines that complete
them the earliest and also execute them the fastest.
L. Max-Min
 First it starts with a set of unmapped tasks. The
minimum completion time of each job in the unmapped set
is found. This algorithm selects the task that has the
overall maximum completion time from the minimum
completion time value and assigns it to the corresponding
machine. The mapped task is removed from the unmapped
set. The above process is repeated until all the tasks are
mapped. On comparison with MCT, Max-Min considers
all unmapped tasks during their mapping decision. The
Max-Min may produce a balanced load across the
machine. When compare to Max-Min, Min-Min is the best
one.
M. Ant Colony Optimization (ACO)
 Ant colony optimization (ACO) was first introduced
by Marco Dorigo as his Ph.D. thesis and was used to
solve the TSP problem [2]. ACO was inspired by ant’s
behavior in finding the shortest path between their nests
to food source. Many varieties of ants deposit a chemical
pheromone trail as they move about their environment,
and they are also able to detect and follow pheromone
trails that they may encounter. With time, as the amount
of pheromone in the shortest path between the nest and
food source increases, the number of ants attracted to the
shortest path also increases. This cycle continues until

most of the ants choose the shortest path. As this work is
a cooperative one and none of the ants could find the
shortest path separately, Max-Min Ant System is based on
the basic ACO algorithm but considers low and upper
bound values and limits the pheromone range to be
between these values. Defining those values, lets MMAS
avoid ants to converge too soon in some ranges. In ACO
one ant participate in each iteration search and also there
is no pheromone evaporation rule. Hence the ant
algorithm is suited for usage in Grid computing task
scheduling.

Figure-1: Ants try to move from one place to another.

Figure-2: Ants are reinforcing the trail with its own pheromone.

Figure-3: Ants choose the shortest path.

 The above figures 1, 2, and 3 are shown the ant’s
behavior. In the grid environment, the algorithm can carry
out a new task scheduling by experience, depending on
the result in the previous task scheduling. In the grid
computing environment, this type of scheduling is very
much helpful. Hence this paper proposes the ant
algorithm for task scheduling in Grid Computing.
N. Resource Aware Scheduling Algorithm (RASA)
 The algorithm builds a matrix C where Cij represents
the completion time of the task Ti on the resource Rj. If
the number of available resources is odd, the min-min
strategy is applied to assign the first task, otherwise the
max-min strategy is applied. The remaining tasks are
assigned to their appropriate resources by one of the two
strategies, alternatively. For instance, if the first task is
assigned to a resource by the min-min strategy, the next
task will be assigned by the max-min strategy. In the next

? ?

? ?

? ?

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

599

round the task assignment begins with a strategy different
from the last round. For instance if the first round begins
with the max-min strategy, the second round will begin
with the min-min strategy. Jobs can be farmed out to idle
servers or even idle processors. Many of these resources
sit idle especially during off business hours. Policies can
be in places that allow jobs to only go to servers that are
lightly loaded or have the appropriate amount of
memory/processors characteristics for the particular
application. In this experimental results show that if the
number of available resources is odd it is preferred to
apply the min-min strategy the first in the first round
otherwise it is better to apply the max-min strategy the
first.
 Alternative exchange of the min-min and max-min
strategies results in consecutive execution of a small and a
large task on different resources and hereby, the waiting
time of the small tasks in Max-Min algorithm and the
waiting time of the large tasks in min-min algorithm are
ignored. As RASA consist of the max-min and min-min
algorithms and have no time consuming instruction, the
time complexity of RASA is O() where m is the
number of resources and n is the number of tasks (similar
to Max-Min and Min-Min algorithms) [1].

III. PROPOSED WORK

 The grid scheduler finds out the better resource for a
particular job and submits that job to the selected systems.
The grid scheduler does not have control over the
resources and also on the submitted jobs. Any machine in
grid can execute any job, but the execution time differs.
The resources are dynamic in nature. As compared with
the expected execution time, the actual time may vary
when running the jobs in the allocated resources. So, the
job placement has been determined according to the
scheduling intension and then data move operations have
been initiated for necessary task to transfer relevant
machines. Processors are claimed after all job components
have been placed. In between the job placement time and
job claiming time the processors could be allocated to
some other job and if this happens the job component can
be re-placed on another task.
 The time between job placement time and job
claiming time is decreased by a fixed amount after every
claiming failure. A job can fail for various reasons, e.g.,
badly configured or faulty nodes, hardware, and software
errors. During this scheduling failed, job and counts the
number of failures of the supposedly faulty node. When a
job fails a previously set number of times then the job is
removed and not rescheduled [6]. If the error count of a
node exceeds a fixed number then that node is not
considered by the co-allocator anymore. The states at the
bottom depict the happy flow, i.e., the states a job goes
through if nothing fails. Different errors occur at various
states of a job. Depending on the kind of error, this
system will chooses to end the job altogether or to retry
the job.

 The resubmit the job immediately done too quickly
from new task of a machine, due to failure cannot claim
its network. We also wait for job to finish so it can
properly execute its clean up phase in which it removes
the temporarily created works. When a job request with
an incomplete or incorrect network specification is
submitted the job will naturally, not be resubmitted and
will exit immediately. Once all components are placed the
claiming phase starts. In contrast to other jobs this is done
once for the whole job, i.e., the components do not get
claimed independently.
 The claiming is done as a job submission request and
can fail for many different reasons, e.g., misspelled or
non-existent executable name, input jobs not present,
local resource manager unavailable, etc. Some of these
errors could be caused by the system itself and could be a
local phenomenon. In this case the job can be retried.
When a new component is successfully submitted, it is
merged into the job component list of the malleable job.
The first step of resource discovery in job scheduling is to
determine the set of resources that the user submitting the
job has access to, in this regard, computing over the grid
is no different from remotely submitting a job to a single
task: without authorization to run on a resource the job
will not run. At the end of this step the user will have a
list of machines or resources to which he or she has
access. The main difference that grid computing lends to
this resources that are not authorized for use. Problem is
sheer numbers [7]. It is now easier to get access to more
resources, although equally difficult to keep track of
them. Also, with current stage implementations, a user
can often find out the status of many more machines than
what he or she resources that are not authorized for use.
 When a user is performing scheduling at the Grid
level, the most common solution to this problem is to
simply have a list of account names, machines, and
passwords written down somewhere and kept secure.
While the information is generally available when needed,
this method has problems with fault tolerance and
scalability for few stages, to proceed in resource
discovery, the user must be able to specify some minimal
set of job requirements in order to further filter the set of
feasible resources. The set of possible job requirements
can be very broad and will vary significantly between
jobs. It may include static details (the operating system or
hardware for which a binary of the code is available, or
the specific architecture for which the code is best suited)
as well as dynamic details (for example, a minimum
RAM requirement, connectivity needed, time space
needed). Some schedulers are at least allowing for better
coarse-grained information about the applications fulfills.
 The grid scheduler’s aim is to allocate the jobs to the
available nodes. The best match must be found from the
list of available jobs to the list of available resources. The
selection is based on the prediction of the computing
power of the resource. The ant based algorithm is
evaluated using the simulated execution times for a grid
environment. Before starting the grid scheduling, the

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

600

expected execution time for each task on each machine
must be estimated and represented by an ET matrix. Each
row of ET matrix consists of the estimated execution time
for a job on each resource and every column of the ET
matrix is the estimated execution time for a particular
resource of list of all jobs in job pool.
 Here the algorithm, rj denotes the expected time
which resource Rj will become ready to execute a task
after finishing the execution of all tasks assigned to it.
First, the Cij entries are computed using the ETij (the
estimated execution time of task Ti on resource Rj) and rj

values. For each task Ti, the resource that gives the
earliest expected completion time is determined by
scanning the ith row of the C matrix (composed of the Cij

values). The task Tk that has the minimum earliest
expected completion time is determined and then assigned
to the corresponding resource from ACO algorithm.

Cij=ETj+rj (1)
 Specification of the resources is according to
resources speed (MIPS) and bandwidth (Mbps),
specification of the tasks depends on instructions and data
(MIPS) completion time of the tasks on each of the
resources .Tasks/Resources R1, R2 and R3 four tasks T1,
T2, T3 and T4 are in the meta-task Mv and the grid
manager is supposed to schedule all the tasks within Mv
on three resources R1, R2 and R3. Table 1 is shown the
specification of the resources and tasks.
1. procedure ACO
2. begin
3. Initialize the pheromone
4. While stopping criterion not satisfied do
5. Position each ant in a starting node
6. Repeat
7. for each ant do
8. Chose next node by applying the state
transition rate
9. end for
10. until every ant has build a solution
11. Update the pheromone
12. end while
13. end

Figure-4: Pseudo code for Existing Ant colony Algorithm.

TABLE 1: SPECIFICATION OF THE RESOURCES AND TASKS.

 Job scheduling system is the most important part of
grid resource management system [9]. The scheduler
receives the job request, and chooses appropriate resource
to run that job. In this paper, the formulation of job
scheduling is based on the expected time to compute
(ETC) matrix. Meta-task is defined as a collection of
independent task (i.e. task doesn’t require any
communication with other tasks). Tasks derive mapping
statically. For static mapping, the number of tasks, t and
the number of machines, m is known a priori. ETC (i, j)
represents the estimated execution time for task ti on
machine mj. The expected completion time of the task ti
on machine mj is CT (ti, mj) = ready (i) + ETC(ti, mj)
ready (i) is the machine availability time, i.e. the time at
which machine mj completes any previously assigned
tasks [10]. The new algorithm is proposed and compare
with existing algorithm also presented here.
 It is start from a mechanism for defining the grid
nodes as well as the input data sources and output data
locations load balancing scheme to improve the scaling
efficiency of the parallel computation and activity of each
node in the grid. To collection of partial result sets from
the nodes in the grid and then back to a centralized
location. In this method, we achieve the optional
additional analysis from the collected results.
 The result of the algorithm will have four values (task,
machine, starting time, executed completion time). Then
the new value of free(j) is the starting time plus ETij. A
heuristic function is used to find out the best resource.

 Ŋ ij =1 / free (j) (2)
 Using the formula 3 the highest priority machine is
found which is free earlier. Here four ants are used. Each
ant starts from random resource and task (they select ETij
randomly jth resource and ith job). All the ants maintain a
separate list. Whenever they select next task and resource,
they are added into the list. At each iteration, the ants
calculate the new pheromone level of the elements of the
solutions is changed by applying following updating rule

Tij = 1 / Etij (3)
 The scheduling algorithm is executed periodically. At
the time of execution, it finds out the list of available
resources (processors) in the grid environment, form the
ET matrix and start scheduling. When all the scheduled
jobs are dispatched to the corresponding resources, the
scheduler starts scheduling over the unscheduled task
matrix ET. This is guaranteed that the machines will be
fully loaded at maximum time. The Pij’s value has been
modified to include the ETij is modified to the following
equation

Pij = Tij Ŋ ij(1/ETij) / ∑Tij Ŋ ij(1/ ETij) (4)
 Furthermore, instead of adding ETij, execution time
of the ith job by the jth machine (predicted), in the
calculation of probability

Pij = Tij Ŋ ij / ∑ Tij Ŋ ij (5)

Tasks

R1
(ready
time

MIPS)

R2
(ready
time

MIPS)

R3
(ready
time

MIPS)

R1
(Executed

time MIPS)

R2
(Executed

time MIPS)

R3
(Executed

time MIPS)

T1 0.44 0.66 0.88 10.88 12.44 14.66

T2 10.88

12.48

14.68

42.66

60.22

62.66

T3

42.68

60.64

64.22

68.66

78.44

74.44

T4

.
68.68

82.22

92.42

98.44

94.44

102.22

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

601

for each tasks Ti and resources Rj allocations
Compute approximate Cij=Ej+rj to ant’s resource allocate end
for
do until all tasks in Mv are mapped
for each tasksTi and Rj
if the number of resources is even then
find the resource free times
for each task in Mv find the earliest completion
time and the resource that obtains it
find the task Tk with the
minimum earliest completion time
find the task Tk with the
maximum earliest completion time
assign task Tk to the resource Rl that gives
the better completion time from min and max
Choose place p randomly from set the resources
Suitable for event e, according to probabilities
end for
for each no of resource & tasks (ants)
best of C and Citeration best with Tmin and Tmax
end for
end for
end while
--

Figure-5: Proposed Algorithm.

 This algorithm [10] can be improved using some
form of operating systems, hardware, and software,
different storage capacities, CPU speeds, network
connectivity’s and technologies needs. In this method we
first find the problem resources and those total execution
times equal to the makespan of the solution, and attempt
to move or swap set of jobs from the problem processor to
another resource that has the minimum and maximize of
makespan as compared with all other resources [11].
After applying the above local optimum technique, find
out the problem resource reduce time again, swap or
move some of the jobs from the resource for relevant
jobs. The search is performed on each problem processor
and continues until there is no further improvement in the
fitness value of the solution.
 Using the Mv are mapped model, the scheduling
problems are number of independent jobs to be allocated
to the available grid resources. Because of no
preemptive scheduling, each job has to be processed
completely in a single machine [12]. Number of
machines is available to participate in the allocation of
tasks. The workload of each job the computing capacity
of each resources (in MIPS) , m- represents the ready time
of the machine after completing the previously assigned
jobs of minimum earliest completion time find the task Tk
with the maximum earliest completion time, where the
executed machines represents the n-number of jobs and
m-represents the number of machines.[13].

IV. RESULTS & DISCUSSION

 The proposed algorithm target on grids if the number
of available resources is odd, the min-min strategy is
applied to assign the first task, otherwise the max-min

strategy is applied. The remaining tasks are assigned to
their appropriate resources by one of the two strategies,
alternatively. For instance, if the first task is assigned to a
resource by the min-min strategy, the next task will be
assigned by the max-min strategy. Alternative exchange
of the min-min and max-min strategies results in
consecutive execution of a small and a large task on
different resources and hereby, the waiting time of the
small tasks in max-min algorithm and the waiting time of
the large tasks in min-min algorithm are ignored. As
RASA consist of the max-min and min-min algorithms
and both have no time consuming instructions. ACO and
RASA algorithms incorporate in which intend to optimize
workflow execution times on grids have been presented
here. The comparison of these algorithms in computing
time, applications and resources scenarios has also been
detailed. In dynamic grid environments this information
that can be retrieved from a many servers includes
operating system, processor type and speed, the number
of available CPUs and software availability as well as
their installation locations.
 The distributed monitoring system is designed to
track and forecast resource conditions. The n tasks can
obviously intercommunicate. A general model should
take into consideration that the communication phase can
happen at any time with I/O phases. To overcome these
difficulties our new algorithm is proposed.
 In this method four ants are used. The number of
ants used is less than or equal to the number of tasks.
From all the possible scheduling lists find the one having
minimum makespan and uses the corresponding
scheduling list. Here three kinds of ET matrices are
formed, first one consists of currently scheduled jobs and
the next consists of jobs which have arrived but not
scheduled. The scheduling algorithm is executed
periodically. At the time of execution, it finds out the list
of available resources (processors) in the grid
environment, form the ET matrix and start scheduling.
When all the scheduled jobs are dispatched to the
corresponding resources, the scheduler starts scheduling
over the unscheduled task matrix ET. This guarantees that
the machines are fully loaded at maximum time.

Figure-6: The Completion time of makespan for Exiting ACO
Algorithm.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

M
a
k
e
s
p
a
n

Iteration

Exiting ACO CTij

Exiting ACO CTij

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

602

Figure-7: The Completion time of makespan for proposed Algorithm

.

Figure-8: Compare the Completion time of makespans for Existing ACO
&Proposed Algorithms.

 These executions minimize the overall completion
time of the tasks by finding the most suitable resources to
be allocated to the tasks. It should be noticed that
minimizing the overall completion time of the tasks does
not necessarily result in the minimization of execution
time of each individual task. The completion time of
makespan for both ACO and proposed algorithms are
illustrated in fig-6 and fig-7 respectively. Task is
assigned to a resource by the min-min strategy; the next
task will be assigned by the max-min strategy. In the next
round the task assignment begins with a strategy different
from the last round. For instance if the first round begins
with the max-min strategy, the second round will begin
with the min-min strategy. Jobs can be farmed out to idle
servers or even idle processors. Many of these resources
sit idle especially during off business hours. Fig-8 is
shown the compare the completion times of makespan of
ACO as well as proposed algorithm. Policies can be in
places that allow jobs to only go to servers that are lightly
loaded or have the appropriate amount of
memory/processors characteristics for the particular
application.

V. CONCLUSION

 This paper investigates chosen job had been allocated
to the best selected ant of each iteration. This process is
repeated until all jobs have been scheduled and a
complete solution has been built. Each ant in the colony
builds a solution, in this manner in each iteration the
searching of proper resource allocation on each
processing jobs. This algorithm can find an optimal
processor and network for each machine to allocate a job
that minimizes the tardiness time of a job when the job is
scheduled in the system. The proposed scheduling
algorithm is designed to achieve high throughput
computing in a grid environment. Min-min and Max-min
algorithms are applicable in small scale distributed
systems. When the numbers of the large tasks are more
than the number of the tasks in a meta-task, the Min-min
algorithm cannot schedule tasks, appropriately and the
makespan of the system gets relatively large. It will be
unlike the Min-min algorithm, the Max-min algorithm
attempts to achieve load balancing with in resources by
scheduling the large tasks prior to the small ones.
However, within a computational grid environment high
throughput is of great enhancement of resource allocation
according to (CPU, network and operating system) system
existing scheduling algorithms in large scale distributed
system’s cost of the communication and many other cases
open problem in this area here we concentrate throughout
mechanism of entire system needs .

REFERENCES

[1] Saeed Parsa and Reza Entezari-Maleki “RASA: A New Task
Scheduling Algorithm in Grid Environment” World Applied
Sciences Journal 7 (Special Issue of Computer & IT): 152-160,
2009,ISSN 1818-4952.

[2] K. Kousalya and P. Balasubramanie,”To Improve Ant Algorithm’s
Grid Scheduling Using Local Search”. (HTTP://WWW.IJCC.US),
VOL. 7, NO. 4, DECEMBER 2009.

[3] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for Grid
Computing:State of the Art and Open Problems", School of
Computing, Queen's UniversityKingston, Ontario, Technical
Report No. 2006-504, January 2006.

[4]. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski,
"Task Mapping and Scheduling in Heterogeneous Computing
Environments Genetic-Algorithm-Based Approach," Journal of
Parallel and Distributed Computing, vol. 47, pp. 8-22, 1997.

 [12] Szajda, D., Lawson, B., and Owen, J. Hardening “Functions for
Large-Scale DistributedComputations”. IEEE Symposium on
Security and Privacy, 2003, pp. 216-224.Vanderbei, R. Linear
Programming: Foundations and Extensions, Second
Edition.Norwell: Kluwer, 2001, pp.136-141.
<http://www.princeton.edu/~rvdb/LPbook>Accessed 17 March
2006.

 [5] J.Brevik, D.Nurmi, and R.Wolski, “Automatic Methods for
Predicting Machine Availability in Desktop Grid and Peerto- Peer
Systems”, In Proceedings of CCGRID’04, pp. 190- 199, 2004.

 [6] “A Heuristic Algorithm for Task Scheduling Based on Mean
Load”1 Lina Ni1,2, Jinquan Zhang1,2, Chungang Yan1, Changjun
Jiang1 1 Department of Computer Science, Tongji University,
Shanghai, 2000-92, China.

[7] P. Cremonesi and C. Gennaro. “Integrated performance models for
SPMD applications and MIMD architectures”. IEEE Trans. on
Parallel and Distributed Systems, 13(12):1320–1332, 2002.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

M
a
k
e
s
p
a
n

Iteration

Proposed ACO CTij

Proposed ACO CTij

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

M
a
k
e
s
p
a
n

Iteration

Existing ACO CTij

Proposed ACO CTij

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

603

[8] E. Tsiakkouri et al., “Scheduling Workflows with Budget
Constraints”, In the CoreGRID Workshop on Integrated research
in Grid Computing, S. Gorlatch and M. Danelutto (Eds.),
Technical Report TR-05-22, University of Pisa, Dipartimento Di
Informatica, Pisa, Italy, Nov. 28-30, 2005, pages347-357.

[9]. J. D. Ullman, "NP-complete Scheduling Problems," Journal of
Computer and System Sciences, vol. 10, pp. 384-393, 1975.

[10] D.Maruthanayagam and Dr.R.Uma Rani, “Enhanced Ant Colony
System based on RASA algorithm in Grid Scheduling”, (IJCSIT)
International Journal of Computer Science and Information
Technologies, Vol. 2 (4) , 2011, 1659-1674,ISSN: 0975-9646.

[11]. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, "Task Mapping and Scheduling in Heterogeneous
Computing Environments Using a Genetic-Algorithm-Based
Approach," Journal of Parallel and Distributed Computing, vol. 47,
pp. 8-22, 1997.

 [13] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. “Models of
parallel applications with large computation and I/O
requirements”. IEEE Trans. on Software Engineering, 28:286–307,
March 2002

Authors Profile

D.Maruthanayagam received his M.Phil,
Degree from Bharathidasan University,
Trichy in the year 2005. He has received his
M.C.A Degree from Madras University,
Chennai in the year 2000. He is working as
Associate Professor in Master of Computer
Applications Department, Gnanamani
College of Technology, Pachal, Namakkal,
Tamilnadu, India. His areas of interest
include Computer Networks, Grid

Computing and Mobile Computing.

Dr.R.Uma Rani received her Ph.D., Degree
from Periyar University, Salem in the year
2006. She is a rank holder in M.C.A., from
NIT, Trichy. She has published around 40
papers in reputed journals and national and
international conferences. She has received
the best paper award from VIT, Vellore,
Tamil Nadu in an international conference.
She has done one MRP funded by

UGC. She has acted as resource person in various national and
international conferences. She is currently guiding 5 Ph.D., scholars.
She has guided 20 M.Phil, scholars and currently guiding 4 M.Phil,
Scholars. Her areas of interest include information security, data mining,
fuzzy logic and mobile computing.

D.Maruthanayagam et al IJCSET |November 2011 | Vol 1, Issue 10, 596-604

604

