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Abstract -While much recent research concentrates on 
propagation models, the defense against worms is largely 
an open problem. Classical containment strategies, based 
on manual application of traffic filters, will be almost 
totally ineffective in the wide area since the worms are 
able to spread at rates that effectively preclude any 
human-directed reaction. Consequently, developing an 
automated, flexible and adaptive containment strategy is 
the most viable way to defeat worm propagation in an 
acceptable time. As a case in point, we look to natural 
immune systems, which solve a similar problem, but in a 
radically different way. Accordingly, we present a 
cooperative immunization system inspired in principles 
and structure by the natural immune system that helps in 
defending against these types of attacks. Our system 
automatically detects pathologic traffic conditions due to 
an infection and informs, according to a cooperative 
communication principle, all the reachable networked 
nodes about the ongoing attack, triggering the actions 
required to their defence.To evaluate our proposal, we 
formulated a simple worm propagation and containment 
model, and evaluated our system using numerical solution 
and sensitivity analysis. Our measurements show that our 
reaction strategy is sufficiently robust against all the most 
common malicious agents. We envision that the above 
solution will be an effective line of defense against more 
aggressive worms. 
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1 INTRODUCTION 
Computer worms and viruses are the first and the only 
form of ‘artificial life’ to have had a measurable impact 
on our society, since it has been widely experienced that 
the massive worldwide spreading of very fast and 
aggressive worms may easily disrupt or damage the 
connectivity of large sections of the internet, affecting 
millions of users. There are few reactions to the above 
threat. Risk may be kept at a minimum by applying the 
patches that remove the security defects exploited by 
worms and viruses in their propagation, as soon as those 
patches are made available. But software bugs seem to 
always increase as computer systems become more and 
more complicated and not all people have the habit of 
keeping an eye on the pact releases or engage 
themselves to constantly keep their systems up-to-date. 
What’s worse, the relatively homogeneous software 
base in almost all the networked nodes in the internet, 
coupled with the current high-bandwidth connectivity, 
provides an ideal climate (Nachenberg, 2000) for self-
propagating attacks. 
Furthermore, the ability of worms to spread at rates that 
make very difficult or actually preclude human-directed 
reaction has elevated them to a first-class security threat 

to all networked systems. Most computer security issues 
can be viewed as the problem of distinguishing self 
(legitimate traffic, authorized actions, original source 
code, uncorrupted data, etc.) from non-self (intruders, 
computer viruses, spoofing, worms, etc.). Nature, more 
specifically the natural immune system, has been 
solving a similar problem for hundreds of millions of 
years, using methods quite different from those 
typically used to protect computers and networks. For 
example, consider the human immune system. It is 
composed of many unreliable, short-lived and imperfect 
components. It is autonomous. It is not ‘correct’, 
because it sometimes makes mistakes. However, in 
spite of these mistakes, it functions well enough to help 
keep most of us alive for 70 years, even though we 
encounter potentially deadly parasites, bacteria and 
viruses everyday. Accordingly, to address the 
widespread worm and virus infection problems, we 
propose a network immune system that takes much of 
its inspiration from nature, thinking that a deeper 
understanding of the natural immune system can help us 
design a more robust and practical ‘computer immune 
The nodes in our system cooperate in detecting and 
informing each other of ongoing attacks and of the 
actions necessary to the defense, driving, when 
possible, the automatic software update to fix the 
exploited vulnerabilities on the infected hosts. To 
evaluate our proposal, we formulated a simple worm 
propagation and containment model, based on the above 
principles and evaluated our system using numerical 
solution and sensitivity analysis. Our observations show 
that our framework seems to be robust and effective 
against viruses and worms. From the above experience, 
we argue that building self-reacting distributed 
containment systems that, like the natural immune 
systems, can detect and prevent in a matter of minutes 
widespread network infections will be one of the most 
promising and challenging lines of defense against 
next-generation more aggressive worms. 
 

2 WORMS AND VIRUSES 
A worm is a self-replicating, segmented and distributed 
computer program spreading from host to host via an 
available network connection. Most often, worms 
exploit vulnerabilities in the host computer’s operating 
system or network service handlers that can accept 
network requests or outside connections. More 
properly, a worm has been defined (Navarro et al., 
2001) as a software component that is capable, under its 
own means, of infecting a computer system and using 
it, in an automated fashion, to infect other systems. 
Worms are viruses that can spread on their own. In 
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contrast, viruses rely on passive means of transfer. For 
example, a virus can spread by tricking a user into 
executing an e-mail attachment or otherwise executing 
an infected file. When the file is copied from an 
infected host to another host, it will infect the new host 
when the file is opened for the first time. Thus, 
malicious agents that spread via human interaction are 
not typically classified as worms. Worms were 
originally considered a benign paradigm to ensure the 
longevity of distributed applications and originally ran 
only on machines that supported either general or 
special purpose remote execution facilities. Two factors 
have changed both the perception and reality of worms 
to be largely malignant platforms for distributed 
applications. Firstly, even when programmers’ motives 
are pure, small bugs can cause worms to proliferate and 
grow more rapidly than it was desired and overwhelm 
the resources of a distributed remote-execution system, 
as in fact occurred on the internet in November 1988. 
Secondly, most worms or viruses no longer use 
legitimate remote execution interfaces to acquire a 
bounded number of nodes. Rather, they exploit bugs 
and loop holes and install themselves on machines 
where they are unwanted. They often try to grow 
without bound, attempting to infect every machine 
accessible to them. many parallels can be drawn 
between biological systems and computer networks. 
Thankfully, computer worms currently are not as 
effective at spreading as their real life counterparts 
because of the passive nature of biological infections 
(Navarro et al., 2001). This is because biological agents 
can survive in the transport media such as blood, bodily 
fluids, etc., just waiting for a host to pick them up. 
Computer worms rely on active methods of infecting 
host that requires searching through the network 
(scanning) for their next target. The analogy of the 
internet worms to that of living systems is not lost when 
it comes to classifying how worms behave. Albanese et 
al. (2004) describes a system that they believe can be 
used to classify any past, present or future worm. Based 
on life functions, the criteria used to classify worms are: 
1 infection 
2 survival 
3 propagation and 
4 payload. 
Infection is accomplished using two general methods – 
the worm either exploits a flaw in the software on a 
running system or a user’s action on the system 
executes the worm code. The second life function, 
survival, is essential for any autonomous agent that 
wishes to spread throughout a system or network. To 
this end, many worms employ techniques that are 
designed to hide their existence and foothold on a 
system. The longer a worm can operate undetected, the 
more likely it is to accomplish its objectives. Survival 
alone is not enough. The worm must also be able to 
spread effectively and this is something that can be 
done only once a worm has gained control of the host. 
Many viruses work by harvesting e-mail addresses on 
the host computer and sending e-mails with infected 
attachments to these addresses; when the attachment is 
executed, the virus infects the new host and begins its 
life functions all over again. With the popularity of 

music and application file sharing on networks such as 
Kazaa or Napster, it is becoming easier to trick users 
into downloading infected files. Once the files are 
executed or viewed, the worm is unleashed. The newly 
infected host then places more infected files on the file-
sharing network. On the other side, the most obvious 
defense against worms and viruses is to prevent their 
attacks by repairing the vulnerabilities they are based 
on, before those can be exploited. Typically, software 
vendors develop and distribute reparative patches to 
their software as soon as possible after learning of 
vulnerability. Customers can then install the patch and 
prevent attacks that exploit the vulnerability. Software 
patching has not been effective as a first-line defense 
against large-scale worm attacks, even when patches 
have been available long before the worm outbreak. 
Generally, people have been reluctant to patch their 
systems immediately, because patches are perceived to 
be unreliable and disruptive to apply. Experience has 
shown, in addition, that administrators often do not 
install patches until long after they are made available, 
if at all (Rescorla, 2003). As a result, attacks such as the 
widely publicized Code Red, SQL Slammer, Blaster 
and Sesser worms, that exploit known vulnerabilities, 
for which patches had been available for pretty some 
time, have nevertheless been quite successful, causing 
widespread damage by attacking the large cohort of still 
vulnerable hosts. In fact, more than 90% of the attacks 
today are exploiting known vulnerabilities (Arbaugh et 
al., 2000).Consequently, to prevent widespread 
infection in the internet, any viable containment 
strategy will require automated detection of 
pathological traffic anomalies generated by infections 
and triggering, via a cooperatively deployed 
communication facility, immediate system updates (by 
applying all the available patches) on the networked 
host to ensure just-in-time reaction to worm epidemics. 
 

3 THE DETECTION AND CONTAINMENT PARADIGM 
Traditional antivirus techniques focus typically on 
detecting the static signatures of viruses. While these 
techniques are somewhat effective in their own right, 
they do not address the dynamic nature of a worm 
infection within the context of the underlying system. In 
a computer network, a worm can propagate through the 
network quickly and it might infect and damage many, 
perhaps all, machines before the severity of the 
situation is recognized valuable mechanism for 
mitigating the damage would be to detect the presence 
of an infection in a network at an early stage and to 
have the network react to the attack in real time. A 
number of challenges exist in developing such a 
scheme. On one side, activities such as signature 
matching, static access control and formal verification 
on system configuration and current state are not really 
effective in coping with the extreme flexibility and 
adaptability of recent worms/viruses, operating in the 
highly dynamic modern computer and networking 
environment. Computers and in particular the 
networked ones are not static systems: vendors, system 
administrators and users constantly change the state of a 
system. Programs are added and removed and 
configurations are changed. 
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Several types of sensors may be employed 
concurrently: Passive sensors, installed on independent 
boxes, perform eavesdropping on traffic to and from the 
hosts operating on their network segment or at least on 
their routing domain to immediately identify any 
anomaly or condition due to a probable worm outbreak 
and to inform all the modes participating to the artificial 
immune system about the dangerous condition, 
eventually triggering, when accepted, an automatic 
update in the installed software base. Active sensors, 
operating on the corporate routers and firewall routers, 
actively monitor the traffic flows passing through them 
and apply, when an anomalous traffic condition 
generated by a worm attack is detected, the proper 
countermeasures in terms of IP or port based filtering or 
rate-limiting. Active sensors, when handling a detected 
infection process, operate like passive sensors in 
cooperatively spreading the alert information through 
the nodes participating to the network immune system 
to ensure just-in-time triggering of the proper actions. 
The whole paradigm is simply sketched in Figure 1 
below. 
 
3.1 Anomaly detection and first epidemic Containment 
Most worms that have been observed so far in the 
internet have the following common characteristics. 
Firstly, they generate a substantial volume of identical 
or similar traffic to the targets, although polymorphic 
worms may not follow this pattern. Secondly, the worm 
infects vulnerable hosts for propagation. Thirdly, many 
worms, for example, Code Red and SQL Slammer, use 
random scanning to probe vulnerable hosts. Therefore, 
scans generated by this type of worm can reach inactive 
IP addresses. Our anomaly detection strategy focuses on 
the above characteristics and is based on continuously 
analyzing some properly chosen health parameters, 
directly reflecting the network behavior in the presence 
of worms and checking them against a ‘sanity’ per-time 
limit threshold. The most significant parameters used in 
our anomaly detection facility are the outgoing flow and 
the connection failure rate. The rate of failed 
connection requests from a host or failure rate can be 
measured by monitoring the failure replies that are sent 
to the host. The failure rate measured for a normal host 
is likely to be low. For most internet applications 
(www, telnet, ftp, etc.), a user normally types domain 
names instead of raw IP addresses to identify the 
servers. Domain names are resolved by Domain Name 
System (DNS) for IP addresses. If DNS cannot find the 
address of a given name, the application will not issue a 
connection request. Hence, mistyping or stale web links 
do not result in failed connection requests. An ICMP 
host-unreachable packet is returned only when the 
server is offline or the DNS record is stale, which are 
both uncommon for popular or regularly-maintained 
sites (e.g. Yahoo, Google, E-bay, CNN, universities, 
governments, enterprises, etc.) that attract most of 
internet traffic. Moreover, a frequent user typically has 
a list of favorite sites (servers) to which most 
connections are made. Since those sites are known to 
work most of the time, the failure rate for such a user is 
likely to be low. If connection fails due to network 

congestion, it does not the measurement of the failure 
rate because no ICMP host-unreachable or RESET 
packet is returned. On the other hand, the failure rate 
measured for a worm-infected host is likely to be high. 
Unlike normal traffic, most connection requests 
initiated by a worm fail because the destination 
addresses are randomly picked, thus including those 
that are not in use or not listening on the port that the 
worm targets at. Consequently, the failure rate can be 
conceived as a very good indicator of the scanning rate. 
Let be the address space size and N the number of hosts 
that listen on the attacked port(s).With N , the relation 
between the scanning rate and the failure rate of a worm 
is:1 _N              (1) 

 
Figure 1 The operating paradigm 

 
In our system, each active or passive sensor informs 
both instantaneously and on a periodic base the other 
detectors about the observed scanning activity, the 
potential offenders and the involved services/ports. A 
continuous, steady increase in the gross scanning 
activity raises the flag of a possible worm attack. The 
worm propagation can be further slowed or even 
stopped by blocking the hosts or ports with persistently 
high rates. In more detail, the edge routers with the role 
of active detectors can be configured to block out the 
addresses or the traffic flow related to specific ports 
whose indicators exceed for a time t the above fixed 
threshold values, where t is a system ‘tolerance time’ 
parameter selected so that if the worm-infected hosts 
perform high-speed scanning, they will be blocked out 
after a time t of activity. Hence if t is assigned a 
sufficiently low (and carefully chosen) value, the worm 
propagation may be stopped before an epidemic 
materializes. The t parameter can also be made 
dynamic: once the threat of a worm is strongly 
confirmed, the edge routers/detectors may decide to 
reduce t, which increases the chance of fully stopping 
the worm. 
 
3.2 Information sharing and communication 
A second major direction has been toward the design of 
cooperative information sharing and reaction facility, 
by using the proper models, to help recognize the 
emergence of a propagating worm or virus and then 
take coordinated action before it can saturate the 
network. (type 0 02), typically sent to the agents to 
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trigger an update, a restart or a shutdown, according to 
the value inserted in the Action field and the 
information update (type 0 01) messages that can be 
used to transport information about one or more traffic 
flows and related filtering control and anomaly 
detection status(Figure 2). 
 

 
 

Figure 2 Information and activity communication 
messages 

 
The Traffic Flow entry, describing the information to be 
transported in inter-detector messages, allows sensors to 
express any detected conditions in terms of traffic 
discriminator list (like an ACL), traffic rate, detected 
alert conditions and suggested action. It supports 
multiple protocol filtering, based on a combination of 
source/destination IP prefix with exact, range or 
wildcard based matching and source/destination TCP or 
UDP port. 
A Traffic Flow entry is defined below (Figure 3): 
 

 
Figure 3 The traffic flow entry 

 
The Traffic rate field is a 4-octet value that specifies the 
measured 5 min sustained traffic rate (in Kbits) of the 
traffic flow. The Alert flags field is an 8-bit mask 
reporting the status of each implemented worm activity 
indicator (0 threshold not exceeded, 1 exceeded) for the 
specified flow. At the moment only the first two bits 
(outgoing flow and outgoing connection failure rate, 
respectively) are meaningful. The Action field specifies 
whether this traffic flow entry should be filtered 
through rate limiting (value 0 01) or definitely blocked 
(value 0 10). A zero action value specifies the 
suggestion to remove any filter for the specified flow. 
The Protocol field is an octet (value 0 255) specifies the 
protocol number to which the specific traffic control 
rule is referred. 

The Source and Destination Prefix Length fields (1 
octet) indicate respectively the length in bits of the 
portion of the Source and destination address prefixes 
that must be matched in the traffic control. This allows 
wildcard-based prefix matching. A length of zero 
indicates a prefix that matches all addresses (with prefix 
itself of zero octets).  
The Source and Destination Prefix fields (4 octets each) 
contain respectively the source and destination IP 
prefixes eventually used in the filtering entry. If the 
corresponding Prefix Length octet is zero, as defined 
above for ‘match any’ source or destination prefix 
entries, this field is a do not care. 
The Source and Destination Port field (2 octets, 
unsigned) indicate the source and destination TCP or 
UDP port referred in the traffic control filter. The field 
is considered as un-specified with a ‘don’t care’ value 
for any protocol other than TCP (value 6), UDP(value 
17) or ICMP (value 1). When the Protocol value is 
ICMP the source and destination port fields contain 
respectively the ICMP type and code values    (Table 1). 
 
Table 1 Variable meaning of the port fields 
 
Protocol        Source port          Destination port 
0 (IP)             NA                          NA 
1 (ICMP)        ICMP Type              ICMP code 
6 (TCP)          TCP source port         TCP destination port 
17 (UDP)        UDP source port          UDP destination port 
 
 

4 MODELING AND PROOF OF CONCEPT 
The two model levels use different time advancement 
mechanisms: the network model is event oriented and 
the epidemic model is time-stepped. However, this does 
not present a problem since a single recurrent event 
timer can be used to advance the epidemic model. The 
available epidemic infection models that can be used to 
describe the spread of the worm as it infects hosts in the 
internet are based either on a discrete stochastic (time-
stepped) approach or on a deterministic one (using 
differential equations). For ‘sufficiently large’ 
populations, such as the global internet it is common to 
approximate the stochastic model by the better 
continuous state, continuous-time deterministic model, 
capturing the mean behavior of the observed 
phenomenon. 
 
4.1 Analysis and results 
We chose to analyze Slammer in our model, since its 
average scanning rate of 4000 scans/sec makes it a 
prototype of a very aggressive worm. The scanning 
speed of Slammer was mainly due to the code being 
contained in a single UDP packet, so Slammer could 
broadcast scans without having to wait for any 
response. A TCP-based worm, on the other hand, would 
have to wait at least a packet round-trip time for 
successful connections to be established. Worse yet, it 
must wait for unsuccessful connection attempts to time-
out. It thus can be expected to have a significantly 
lower average scan rate. We used a scan rate of 4000 
scans/sec, a baseline removal rate 5.2 removals/sec, a 
total population of N 120,000 hosts, a detection time 20 
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sec and I(0) 1 initially infected host. Figure 4 shows I(t) 
IU(t) ID(t) for different rate-limiting factors, when no 
stimulated patching is in place. It should be noted that 
the choice of rate-limiting factors is prudent: even a 
rate-limit of 0.01 brings a 100 Mbit/sec Ethernet 
connection at the speed of a DSL line. 
 

 
Figure 4 Sensitivity to with no stimulated patching 

 
We observe that rate limiting alone cannot stop a worm 
as aggressive as Slammer. Even a small rate-limiting 
factor, though, can delay the infection for some 
valuable time before communication links become 
saturated and exchange of information becomes 
difficult. In addition, it was an important design 
requirement that the system should provide some 
benefit even in a limited version, without stimulated 
patching, because it may be argued that users may resist 
the installation of an agent on their machines. This 
would probably be an issue in some environments, but 
we believe that user resistance would not be higher than 
what can be expected of protocol stack implementation 
that limit the number of hosts contacted. Figure 5 shows 
the same data as Figure 4, but with stimulated patching 
at 10,that is, updates are increased by a factor of ten. 
 

 
Figure 5 Sensitivity to with stimulated patching 

 
Here, the rate-limiting factor influences the maximum 
percentage of hosts affected, as well as the time at 
which this maximum is reached. Again, a rate-limiting 
factor of 0.01 achieves good performance. This can be 
favourably weighed in consideration of the confined 
effects that false positives may have. A machine 
legitimately doing traffic that resembles scanning would 

not undergo a complete block, only a slowdown. Figure 
6 above illustrates I(t) IU(t) ID(t) for different patch 
rate increase factors, with no rate limiting in place. We 
see that a factor of 10 is needed for the infection to be 
contained somewhat. Figure 7 shows again I(t) for 
different patch rate increase factors, but with rate 
limiting fixed at 0.01. 
 

 
Figure 6 Sensitivity to with no rate limiting 

 
The effects of stimulated updating are amplified by rate 
limiting. At 10 the infection is restrained to 70% of the 
total population and recovery time is acceptable. 
 

5 RELATED WORK 
Most research on the internet worms concentrates on 
studying propagation models (Liljenstam et al., 2002; 
Stanford et al., 2002). In particular, Zou et al. (2002) 
proposed a modified ‘two-factor’ epidemic model that 
accurately described the Code Red worm propagation 
and can be considered as a milestone in representing 
worm infection processes. They considered the 
infection factor as a variable, scaling it down as more 
hosts are infected. They described the recovery and the 
immunization processes with two separate 
compartments whose evolution is regulated by distinct 
differential equations. However, the problem of 
conceiving effective automatic defense mechanisms 
against worms is still an open problem. Moore et al. 
(2003) have recently studied the effectiveness of worm 
containment technologies (such as address blacklisting 
and content filtering) and concluded that such systems 
must react in a matter of minutes and interdict nearly all 
the internet paths in order to be successful. Williamson 
proposed to modify the network stack so that the rate of 
connection requests to distinct destinations is bounded 
(Williamson, 2002) thus limiting in advance the 
infection virulence. The main problem is that this 
approach becomes effective only after the majority of 
all the internet hosts are upgraded with the new network 
stack, that is, in the real world, almost unpractical. 
Recent work has focused on automated distributed 
mechanisms fo containment (Moore et al., 2003) and 
disinfection (Nojiri et al., 2003) that may be able to 
spread fast enough to mitigate the effect of the virus. 
Some believe that there is reason for guarded optimism. 
Studies have shown that fairly low-levels of 
immunization (Wang et al., 2000) or low-level 
responses (Kephart and White, 1991) can be enough to 
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contain the virus or significantly slow the spread of the 
virus. The automated response mechanisms may be able 
to detect, filter and disinfect or immunize quickly 
enough to prevent runaway infection and allow human 
intervention. 
 

 
Figure 7 Sensitivity to with drastic rate limiting 

 
6 .CONCLUSION 

As millions of users migrate between home, office, 
coffee shop and bookstore, they take with them not only 
their computer, but also electronic hitchhikers such as 
fast propagating worms and viruses they picked up in 
elsewhere, threatening the integrity of all the network 
environments they access in. This problem will only be 
exacerbated as wireless coverage expands and nomadic 
behavior becomes more and more common. This is a 
fundamental security threat that must be effectively 
addressed. Accordingly, our work pursues the idea that 
only an automated reaction system approach can 
present an effective defense against fast (or flash) 
viruses and worms in modern heterogeneous network 
environments. We started from the consideration that 
many recent efforts, focused on network and host 
protection, typically based on a conservative prevention 
approach, produced solutions that either presented 
considerable impact on performance or have been 
demonstrated inadequate or extremely difficult to 
implement. Our first-reaction adaptive and cooperative 
approach is inspired by the natural immune system and 
tries to automatically solve the infection problems at the 
single host level by patching, when necessary all the 
vulnerable software, thus circumventing the need for 
human intervention in time-critical infection 
containment. Since the proposed system can identify 
anomalous traffic shortly after the scanning activity 
starts, this information can be also used to quickly limit 
the scan rate, for example, by applying suitable access 
lists aimed at rate-limiting the IP traffic coming from 
the offending machine. While filters are much more 
precise in limiting only the scans, leaving legitimate 
traffic undisturbed, setting them up requires detailed 
knowledge of the scan traffic. Without such knowledge, 
rate limiting the suspect host can however protect the 
network at the earliest stage of the infection, although in 
some cases false positives may occur. This reaction 
system, like the natural immune system, is massively 
parallel and its functioning is truly distributed. 

Individual components, like the different kinds of 
human cells, are disposable and unreliable, yet the 
system as a whole is robust and effective like the results 
of our analysis assess. Novel or already known 
infections can be detected and eliminated quickly, using 
a variety of adaptive mechanisms, which can be further 
enriched. The system is autonomous, controlling its 
own behavior both at the detector and effecter levels. 
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