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Abstract-This paper deals with the design of unbalanced power 
loading problem in a power distributed systems and optimal 
switching capacitor placement based on Extreme Learning 
Machine.  The recent studies reveal that the problem of optimal 
switching capacitors placement have been solved through various 
non-traditional optimization techniques,  which are less accurate 
and time consuming.  In this paper, we introduce Extreme 
Learning Machine (ELM) concept to design and implement an 
intelligent, automated ELM based switchable capacitor 
placement control unit. This control unit will periodically get the 
input from the feeders along with the other inputs called the 
power loss index and voltage.  Based on the power flow 
(unbalanced) and other calculations, this control unit will 
automatically determine the candidate sites and size of the 
capacitors to activate switchable capacitors dynamically. For 
quick decision making, the centralized control unit requires less 
computational time to evolve the site and size of the capacitors 
and it is achieved through ELM, because its computational time 
is comparatively less than  other methods.  Finally, the results 
are compared using a standard 70-bus test system with other 
models, with respect to the capacitor placement on the networks, 
savings and the computational time.  It is finally proved that the 
proposed model performs better than other models.  
 
Keywords: Optimal Capacitor Placement, Fuzzy Logic, Artificial 
Neural Networks (ANN), Particle Swarm Optimization, Fuzzy 
Expert Systems, Optimal power flow. 
 

I. INTRODUCTION 

The design of fixed capacitor bank in a power distributed 
system is not applicable always because the determination of 
the instantaneous, peak, and average power factor vary greatly. 
Consequently, target power factor may be much different than 
the ‘typical’ power factor during peak or off-peak loading 
periods in a normal situation. In many of the situations, the 
power systems recorded the variable loading throughout the 
day, especially in commercial and industrial areas. These 
areas require peak loads during the day and considerably 
lower overnight, but in heavy industries loads are consistent 
during ‘normal’ operation but vary largely through various 
stages of the process.  Because of this variability in loading, 
switched capacitors are often required to minimize power 
factor penalties, to regulate voltage, and to minimize system 
loading. Still, it is very difficult to beat the cost and simplicity 
of applying a fixed capacitor bank.  
The main advantage of a switchable capacitor bank is that it 
automatically selects as much as required kVar capacitors at 
any point of time. Switched capacitor banks have an electronic 
controller that senses the system power factor (measuring 

system voltage within the capacitor bank and system current 
via an external CT or CTs) and regulates the number of steps 
or stages that are energized. The controller is programmed to 
raise the system power factor to a “target” power factor. LV 
capacitors often have more stages/steps than MV systems. 
MV switched capacitors require significant additional cost per 
switched stage because of the required switching devices 
(contactors) and physical space for the switching components. 
One method of achieving multiple step variability without 
having multiple switching devices is to use different size 
switching steps. For example, if the load varies greatly and 
1500 kVar of MV capacitors is required; one can use 1 × 300 
and 2 × 600 kVar stages. This would allow steps of 300, 600, 
900, 1200, and 1500 kVar with three switching devices 
instead of five.  
A high percentage of switched capacitor banks are switched 
with mechanical contactors. These contactors are relatively 
inexpensive and are simply used as a switch. The control 
algorithm switches steps in and out in order to maintain a set 
power factor. It does not switch in steps as soon as the power 
factor falls below a certain level nor does it switch out banks 
as soon as the power factor  rises above a certain level.  
The importance of control unit algorithm is to activate the 
respective capacitor with respect to the places and sizes 
depending on the input. The conventional control algorithm 
takes much time to decide the place and size and hence we 
require a very sophisticated control unit (Benemar Alencar de 
Souza etal. (2004), Ng et al., (2000), Gasbaoui,B., etal.(2010), 
Ivo Chaves da Silva, Jr., etal. (2008), Shirrang Karankikar, & 
Ashok Ghatol (2008), Srinivasa rao,R (2010)).  Biswarup Das 
et al., (2001) proposed an ANN based optimal capacitor 
switching in a distributed system and proved that ANN 
performs 100 times better than the conventional method. A 
conventional particle swarm optimization proposed by Lee et 
al., (2008), found an optimal solution in an unbalanced 
loading distribution systems.  Auchariyamet et al.,(2008) 
proposed an Adaptive Particle Swarm Technique to search for 
an optimal or near-optimal solution using unbalanced loading 
distribution systems with the presence of non-linearity loads.  
This paper is organized as follows.  The reactive 
compensation problem and its mathematical background are 
formulated in section II.  Section III elucidates the proposed 
solution method with a brief explanation of ELM. In Section 
IV, the proposed method is evaluated using 70-bus test system 
and discussed with all system loads and finally the result is 
compared with other techniques. The conclusion is given in 
section-V. 
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II. MATHEMATICAL FORMULATION 

The objective function of capacitor placements is to reduce 
the total energy losses and to maintain the bus voltage within 
the prescribed limits with minimum cost.  The defined 
objective function has two parts, namely the cost of capacitor 
placement and the cost of total energy losses. The cost of 
capacitor placement includes the cost of capacitor, its 
installation and operational cost. 
 
The objective function of the optimal capacitor placement is 
given below: 
 
    Minimize 

   
N

PL L C
m = 1

F = K P  + K m  B m                                (1) 

    subject to the constraints 
 
     min maxV i   V i   V i   for i = 2, 3, 4, .... , N                 (2) 

 
where F  = the total annual cost function defined in $’s, KPL = 
annual cost per unit  of power losses ( $/kW ) , PL = total 
active power losses (kW), KC(m) = cost of capacitor 
placement (cost / kVAR), B(m) = shunt capacitor size placed 
at bus m (kVAR), N = total number of buses, Vmin(i) = 
minimum permissible rms voltage at bus i,  and Vmax(i) = 
maximum permissible rms voltage at bus i. 
 
Generally, the losses in the distribution line happen due to the 
following two factors.  They are (i) Current flowing through 
the conductor, and (ii) The resistance in the line. The annual 
power losses can be estimated through the formula 
 

PL  =  3 I2 . R . L . DF . LF .TPY                          (3) 
 

Where I = total current flowing through the line for single 
phase, R = resistance of the line,  L = length of the line, DF = 
discounting factor, LF = load factor and TPY = total number 
of hours working per year.  
Several researchers have developed the optimum sizes of the 
capacitor using various techniques like algebraic methods, 
linear programming, heuristic search, fuzzy expert systems, 
AI based techniques and so on. But in this paper, we have 
used the following optimization model for finding the size of 
the capacitor, and it is given below: 
         Maximize 

P P E E CS = K  L + K L  - K  C                             (4) 
     
 subject to the constraint 

maxV  V                                                         (5) 
 

where  ΔLP = the loss reduction in peak demand, ΔLE = energy 
due to capacitor installation, KP = cost of peak demand per 
kVAR, KE = cost of energy per kVAR, Kc = cost of capacitor 
per kVAR, C is the size of the capacitor in kVAR, ΔV = the 
change in voltage due to capacitor installation, and ΔVmax = 
Maximum Voltage which cannot be exceeded. 
 

III EXTREME LEARNING MACHINE (ELM) 
The design of power flow problem in the distribution network is 
unbalanced system load and its load varies normally from 0% to 
25% from time to time. To avoid various drawbacks of the fixed 

capacitor bank, we design an intelligent automated control 
system to determine the switchable and non switchable capacitor 
dynamically by using ELM. 
The conventional methodology efficiently controls a static 
environment rather than a dynamic one with lots of errors in 
finding site, but ANN is addresses these problems to some 
extent and its performance is faster than the conventional 
method (Biswarup Das, & Pradeep Kumar Verma, (2001)). 
Generally, in the feedforward artificial neural network training 
scheme, all its weight vectors are tuned according to their actual 
input and output data sets, and it uses the optimized learning 
algorithm called back propagation / hybrid learning algorithms. 
Back propagation learning algorithm is used to optimize the 
neural network non-linearly and its learning algorithm depends 
on deepest-descent non-linear optimization technique. Back 
propagation learning algorithm is one of the most powerful 
feedforward neural network algorithms but at the same time, the 
notable drawbacks of these gradient descent based learning 
methods are generally slower due to improper learning steps and 
may converge to local minima. Again, it requires large number 
of epochs to obtain a better performance. 
In this paper, we introduce ELM which is more effective in 
deciding the switchable capacitor very accurately with less 
computational time and is well suited for the dynamic 
environment. It is more efficient than ANN (Biswarup Das, & 
Pradeep Kumar Verma, 2001) and its  performance analysis  is 
given in table-3. 
 
A.  Introduction on ELM 
In the recent past, Huang et al., (Huang,G.B., Zhu,Q.Y., 
Siew,C.K., Charatchandran,P., & Soundarajan,N., 2004; 
Huang,G.B., & Siew,C.K., 2004; Huang,G.B., & Siew,C.K., 
2005) has proposed a new learning algorithm called the ELM 
and  it is a single-hidden layered feedforward neural network 
(SLFNs). Hanang, G.B., et.al., (Huang,G.B., Zhu,Q.Y., 
Siew,C.K., Charatchandran,P., & Soundarajan,N., 2004)  
states that ELM may randomly choose and fix all the hidden 
node parameters and then analytically determine the output 
weights.   
Once the weights of the SLFNs have been randomly assigned, 
and considered as a linear system, the output weights can be 
obtained analytically through a generalized inverse operation 
of the hidden layer output matrices.  The activation function 
used in ELM is anyone of the non-linear activation functions 
used in neural network (sigmoid, hyperbolic function etc.,), 
radial basis function (Huang,G.B., & Siew,C.K., 2004; 
Huang,G.B., & Siew,C.K., 2005), complex activation function 
(Li,M.B., Huang,G.B., Saratchandran,P., & Sundarajan,N., 
2005),  and so on.   
The proposed SLFN can have P hidden nodes and it can be 
approximated through the given N pairs of input / output 
values, namely, )   x   with zero error, then we 
have  
 
    for j = 1, 2, …. P                   (6) 
 
where (ai, bi) is the parameter associated with ith hidden node 
and I is the output weight linking the ith hidden node to the 
output node. In this paper, we use non-linear activation 
function, called sigmoid function. That is,  
 

 . 
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Hence, equation (*) can be rewritten as 
 

H  = T                                     (7) 
Where�

                                                        (8) 
 

 T and,  T                 (9) 
 
While computing,  = H# T is used as the estimated value 
of , where H# is the Moore-Penrose (D.Serre, 2002) 
generalized inverse of the hidden layer output matrix H.  The 
following is the formal ELM algorithm proposed by Huang et. 
al.,( Huang,G.B., Chen,L., & Siew,C.K., 2006). 
B.  ELM Algorithm 
 
Given a training set of input / output values ) 

x , for i = 1, 2, …, N;  the activation function 
  and the number of 

hidden nodes P.  
 
Step (1): By using continuous sampling distribution, assign 
random hidden nodes by randomly  
               generating parameters (ai, bi) for i = 1,2, …, N 
Step (2): Compute the hidden layer output matrix H 
Step (3): Compute the output weight , by using the relation 

 = H# T   
 

 
 C. ELM Approach for Optimal Switching Capacitor 
Placement 

 
The following is the procedure for finding the optimal 
switchable capacitor placement through automated 
centralized control unit. 

 
1. The fuzzy variable, system load is linguistically divided 

into three types which are low, medium and high. The 
classification of the fuzzy linguistic rule is followed by 
the combination of both triangular and trapezoidal 
membership function as in fig.-1.  In this paper, we 
assume that the variation of the system load is between 
0% and 25%.  The switchable capacitor patterns are 
derived from system load. 

  
 

Fig.-1: Fuzzy Membership Function for input variable 
‘System Load’  

 
2. The other two input variables are power loss index and 

the voltage. Again, initially the system load is 
normalized between 0 and 1 before feeding to ELM. 

3. All the three input values are fed into ELM, which is 
available in the centralized control unit.  The given 
ELM is a single layered feed forward network with 
three inputs and one output, called capacitor placement 
suitability. Then, ELM structure is to be trained with a 
set of training input / output data.  The training data 
would be obtained from an optimal capacitor switching 
software package based on a conventional capacitor 
switching algorithm. 

4. After training ELM, the control unit will find the 
optimal capacitor placement.  

5. Once ELM is trained with sufficiently large number of 
training data set, the training will be stopped with 
error 1e-05.   

6. Again, with the help of equations (4) & (5), it will also 
find the size of the capacitors.  

Depending on the size of the capacitor evaluated by ELM 
algorithm, the control unit will activate the required amount of 
switchable capacitors to ON state and others  to OFF state. 
 

IV RESULTS AND DISCUSSION 
The design of ELM-based optimal switching algorithm can be 
explained with a sample of 70-bus system and all its bus 
related data are given in (Gary Boone and Hsiao-Dong 
Chiang, 1993). The one-line diagram of the network is given 
in Fig.-2 and the data for this test system is given in Gary 
Boone and Hsiao-Dong Chiang, (Gary Boone and Hsiao-Dong 
Chiang, 1993). In the given 70-bus test system, there are 49 
load points and in each point the real (kW) and reactive 
(kVar) loads are specified. Hence, there are 98 real and 
reactive loads available in the given test system. Depending 
on the load flow as defined in fig.-1, there are 31 locations 
identified to install capacitors with size of 200 kVar each. The 
identified locations are 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 
22, 25, 27, 28, 43, 45, 50, 51, 52, 55, 56, 60, 62, 63, 65, 66, 
67, 68, 69, and 70.   Thus, the designed ELM has 294 input 
nodes and 31 output nodes.   
The power loss in the developed countries varies from 4% to 
7% where as in the developing countries, this variation is 
between 20% to 51%, especially in India it is 31 % [18]. That 
is why, the role of automation is essential now-a-days for both 
static power load and unbalanced power load.  The automation 
is required in static power load to maintain the voltage 
stability throughout the system. Again, Distribution 
Automation System (DAS) is beneficial in day-to-day 
operation and maintenance of distribution network. The other 
benefits of the distribution automation are: reduced technical 
and commercial losses, improved cash flow, lower electric 
service restoration time, reduction in equipment damage, 
better availability of system information, improved 
operational planning, remote load control and shedding, and 
enhanced power quality and reliability.  Currently the scope of 
Power System Automation in India has been limited to 
SCADA system automation up to transmission level (Ahmed 
et al., 2010).  
In countries like India, most of the times the load flow is 
varying drastically and hence fixed capacitor installation is not 
viable and hence we need to go for automation dynamically. 
Set up a centralized control unit and it will decide what are all 
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the switchable capacitors, which will activate ON / OFF state 
with respect to the appropriate place?  It is time now to design 
an effective, intelligent, soft computing technique based 
centralized control unit which will immediately decide the 
decision of the optimal place and sizable switchable capacitors 
with the help of ELM.  
To train and test ELM, it is necessary to generate a sufficient 
number of input-output patterns in different loading 
conditions. The different loading conditions in the system are 
achieved by varying the kW and kVar loading the system 
within a certain range with respect to the base operating 
condition.  For that purpose,  derive a set of  input-output 
patterns in different loading conditions and  design a 
programming technique to simulate as many required as input-
output data patterns for training and testing  with respect to 
the  different base operating conditions, namely, low, medium 
and high. The data set used for training is different from a data 
set used for testing. 
For a thorough study of a system, we artificially fluctuate the 
system load on the basis of the random number generation. 
Then, we have to check how many instances per day the 
system load touches Low, medium and High. Then we have to 
find the weight factor of the system by using the formula,  
 

 
Fig.-2 : 12.66 kV, single line 70-Bus test system 

 
Weight Factor of the System load Low = (Sum of the instants 
(Low) counted per day per period) / (Sum of all the instants 
counted per day per period).   
 
Similar formula can be used to find the weight factor for 
medium and high load levels. The following is the ELM 
procedure to determine the ON-OFF state of switchable 
capacitor: 

i. The centralized control unit contains ELM 
architecture and it dynamically accepts system loads 
and other input values through sensors. The designed 
ELM has 294 input nodes (power loss index, voltage 
and system load) and 31 output nodes.  The given 
ELM is a Feed Forward Neural Networks with two 
hidden layers using sigmoidal activation function.   

ii. For each system load flow (Low, Medium or High), 
large amount of generated input-output patterns are 
fed into the FEM algorithm and trained.  

iii. The output of the trained FEM (called capacitor 
placement suitability) tells the exact position to 
install the capacitor. 

iv. Then, apply capacitor size algorithm to find the size 
of  each capacitor. 

v. The information regarding the site and the size of the 
capacitors is sent to the respective candidate from the 
centralized control unit through the sensors. 

Based on the output, we find that some of the site positions 
are mandatory for all type of system loads.  For example, in 
the 70-bus test system, the capacitor installation at site number 
22 is a must for all the methods with 200 kVar capacity, 
namely Heuristics Search, Particle Swarm Optimization, 
Fuzzy Expert systems ( Ng et al., 2000), ANN,  and ANFIS 
(Ravichandran et al., 2011).  
 
Finally, we have achieved the following:  (i). Based on the 
system load, the centralized control units activate the relevant 
switching capacitors to ON state and rest of the switching 
capacitors to OFF state, (ii). ELM training accuracy is 
maintained at 1e-05 error, and (iii). Stability of the voltages is 
maintained in the range of 0.968324 p.u to 1.002011 p.u after 
the capacitor installation. When compared to other methods, 
ELM maintains acceptable range of voltage stability 
throughout the system and its stability diagram is given in 
Fig.-3. 
 

0.9

1

1.1

1 2 3 4 5 6 7 8 9 10

Voltage Stability Diagram

Heuristic Search PSO

ANN ELM 

Actual

 
Fig.-3 : Voltage Stability Diagram ( X: different instances, Y: 

Voltage Stability after Capacitor Installation) 
 

 For testing an ELM algorithm, simulate 1000 data set for 
each system flow.  After testing ELM algorithm, it finds that 
the percentage of mismatch is roughly about 1.52. That is, out 
of 1000 input data patterns, totally there are 31000 output 
values.  Therefore 1.52% of 31000 output values, namely 471 
values are mismatched with the original data and the 
remaining 30529 values are exactly matched with the original 
data. The correlation coefficient between the testing data and 
the actual data is 0.999651.  Again, comparing the 
computational time with ANN, it is 58 times faster than ANN 
and 158 times faster than the conventional methods. 
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Table 1: Analysis of the status of capacitors for the system level at a   
particular point of time 

 
Site 

Number 
Status – 1  
(ON/OFF) 

Status -2 
(Switchable / 

Fixed) 

Capacitor 
Size 
(kVar) 

7 
8 
9 
10 
11 
12 
13 
15 
17 
18 
19 
22 
25 
27 
29 
43 
45 
50 
51 
52 
55 
56 
60 
62 
63 
65 
66 
67 
68 
69 
70 

OFF  
OFF 
OFF 
OFF 
OFF  
ON 
OFF 
OFF 
OFF  
OFF 
OFF 
ON 
OFF  
OFF 
OFF 
OFF 
OFF  
OFF 
OFF 
OFF 
OFF 
ON 
ON 
ON  
ON 
OFF 
OFF 
OFF  
OFF 
OFF 
OFF 

--- 
--- 
--- 
--- 
--- 

Switchable 
--- 
--- 
--- 
--- 
--- 

Fixed 
--- 
--- 
--- 
--- 
--- 
--- 
--- 
--- 
--- 

Switchable  
Switchable  
Switchable  
Switchable  

--- 
--- 
--- 
--- 
--- 
--- 

--- 
--- 
--- 
--- 
--- 

200 
--- 
--- 
--- 
--- 
--- 

200 
--- 
--- 
--- 
--- 
--- 
--- 
--- 
--- 
--- 

200 
400 
400 
400 
--- 
--- 
--- 
--- 
--- 
--- 

 
For example, the bus number 63 is at ON state when the 
system load is considered at any point of time and it is 
switchable mode.  There are three switchable capacitors 
installed at the bus 63, whose sizes are 200 kVar.  
Depending upon the requirement, two of the capacitors at bus 
63 are in ON state and remaining are in OFF state. For 
example, if the system load is considered at a particular point 
of time, 400 kVar sized capacitors at site number 63 is 
required to be ON and the remaining 200 kVar are OFF. 
Hence, depending upon the requirement, at bus number 63, it 
may be switched to either 200kVar or 400 kVar or 600 kVar. 
The site positions vary from method to method, but in the 

proposed method, it minimizes the power loss as well as its 
savings is better when compared to other methods. The total 
power losses and cost savings with respect to the system load 
is given in Table-3. The power losses can be calculated as an 
average of all low, medium and high instants at any period of 
time as for as this methodology is concerned.  
The optimal power flow before capacitor placement for all 
levels is given in table -2. The energy cost is assumed to be 
0.06 US$ /kWh for all the levels and computation time can be 
calculated by using Pentium IV processor with 3.1 MHz. 
 

Table-2:  Total Losses before Capacitor Placements 
Load 

Level 
Losses (kW) Cost of Losses (US$) 

Low 
Medium 
High 

173.44 
985.54 

1993.22 

10406.4 
59132.4 

119593.2 
 3132.20 189132.0 

 
The performance chart of ANN, ANFIS and FELM with 
respect to percentage of accuracy is given in Fig.4 and it is 
analyzed  through  matlab:  

50

60
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80

90

30 60 90 120 150 180 210 240 270 300

Performance Vs 
Number of iterations

ANN ANFIS ELM

 
 

Fig.4 : Performance chart between the number of epochs and the 
percentage of accuracy attained 
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V CONCLUSION  
In this paper, we discuss the optimal switching capacitor 
placement model based on ELM under stochastic environment.  
To achieve better prediction and fast decision making to 
activate switchable capacitor, ELM mechanism is 
incorporated with intelligent automation power system. The 
proposed ELM performs with less computational time and 
more accuracy.  ELM intelligent automation system is an 
intelligent way of predicting better site and size of the 
capacitor. Depending upon the system load, the centralized 
control unit intelligently controls all the switchable capacitors 
at either ON or OFF state and it is well suited for dynamic 
environment. 
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