

Towards Effective Software Security through
Testing Stage of SDLC

Vidyabhushan Anantrao Upadhye , Dr. Shashank D. Joshi
Department of Computer COE,Bharati Vidyapeeth University, Pune, India

Abstract: Today software has become an integral part day to
day life Keeping in view the daily increase in software security
threats, developing secure software has become a necessity in
the propose method most of the vulnerability are tested.
Early detection of vulnerabilities in software while developing
it and countering them in the software development cycle will
save our time and energy spent on removing them after
software release. In this paper we propose technique software
security through Testing Stage of SDLC.
Keyword: software development life cycle , vulnerabilities

1. INTRODUCTION
Testing is the process of executing a program or system
with the target of finding bugs. It involves any activity
aimed at evaluating a characteristic, capability of a
program or system and significant that it meets its required
results. Software bugs will almost forever exist in any
software module with sensible size not because
programmers are careless or reckless, but because the
difficulty of software is generally stubborn and humans
have only limited ability to manage complexity. It is also
true that for any complicated systems, design defects can
never be completely ruled out.
Software quality, reliability, consistency and security are
tightly coupled. Flaws in software can be exploited by
intruders to open security holes. With the development of
the Internet, software security problems are becoming even
more severe and very painful.
Many critical software applications and services need
integrated security measures against malevolent attacks.
The purpose of security testing of these systems include not
only identifying but removing software flaws that may
potentially lead to security violations, and validating the
efficiency of security measures. Simulated security attacks
can be performed to find vulnerabilities.
A vulnerability scanner is a application program that
performs the analytical phase of a vulnerability analysis,
also known as vulnerability assessment. Vulnerability
analysis defines, identifies, and classifies the security holes
and their vulnerabilities in a computer, server, network, or
communications channel, infrastructure.
In addition, vulnerability analysis can forecast the
effectiveness of proposed countermeasures, and evaluate
how well they work after they are put into use. A
vulnerability scanner relies on a database that contains all
the information required to check a system for security
holes in services and ports, anomalies in packet
construction, and potential paths to credulous programs or
scripts. Then the scanner tries to exploit each vulnerability
that is discovered. This process is sometimes called ethical
hacking.

An ideal vulnerability scanner has many capabilities for
example Preservation of an up-to-date database of
vulnerabilities. Detection of authentic vulnerabilities
without an excessive number of false positives. Ability to
perform trend analyses and provide clear reports of the
results. Recommendations for countermeasures to
eliminate discovered vulnerabilities. If security holes are
detected by a vulnerability scanner, a vulnerability
disclosure may be required. The person or organization that
discovers the vulnerability, or a responsible industry body
such as the Computer Emergency Readiness Team
(CERT), may make the disclosure, sometimes after alerting
the vendor and allowing them a certain amount of time to
remedy or moderate the problem.

-+
Fig.1 UI for Vulnerabilities Detection Tool before process
Fig 1 Shows UI for Detection of Vulnerabilities in software
application before process starts.After scanning predefined
Vulnerabilities the tool presents report summery as shown
in Fig.2.

Vidyabhushan Anantrao Upadhye et al IJCSET | June 2011 | Vol 1, Issue 5,200-202

200

Fig.2 UI for Vulnerabilities Detection Tool after process

Stress testing in IT industry hardware as well as software
sectors means testing of software for its effectiveness in
giving consistent or satisfactory performance under
extreme and unfavorable conditions such as heavy network
traffic, heavy processes load. working under maximum
requests for resource utilization of the peripheral or in the
system.
In other words, stress testing helps find out the level of
robustness and consistent or satisfactory performance even
when the limits for normal operation for the system
(software/hardware) is crossed. Most important use of
stress testing is found in testing of software and hardware
that are supposed to be operating in critical or real time
situation. Such as a website will always be online and the
server hosting the website must be able to handle the traffic
in all possible ways (even if the traffic increases manifold),
a mission critical software or hardware that works in real
time scenario etc. Stress testing in connection with
websites or certain software is considered to be an effective
process of determining the limit, at which the
system/software/hardware/website shows robustness, is
always available to perform its task, effectively manages
the load than the normal scenario and even shows effective
error management under extreme conditions.

RELATED APPROACHES
The methodology aims to minimize vulnerabilities in
software under expansion. To this aim, each time, output of
each phase of SDLC is fed to the security checklist where it
is verified whether the output fulfills fundamentals for
security of the phase. If yes, the phase is declared as secure.
If not, the output is properly analyzed for the detection of
the vulnerabilities [1].

We are developing a process for systematic and continuous
development of software security throughout the software
lifecycle, that is suitable for industrial adoption, and
focuses on preventing vulnerabilities in all phases of
software development [2].
An ideal vulnerability scanner has capabilities such as:
Preservation of an up-to-date database of vulnerabilities.
Detection of authentic vulnerabilities without an excessive
number of false positives. Ability to perform trend analyses
and provide clear reports of the results. Recommendations
for countermeasures to eliminate discovered vulnerabilities.
If security holes are detected by a vulnerability scanner, a
vulnerability disclosure may be required. The person or
organization that discovers the vulnerability, or a
responsible industry body such as the Computer
Emergency Readiness Team (CERT), may make the
disclosure, sometimes after alerting the vendor and
allowing them a certain amount of time to remedy or
moderate the problem.

IMPORTANCE OF STRESS TESTING:
Stress testing is considered to be important because of
following reasons:
1. Almost 90% of the software (systems) are developed

with an supposition that they will be operating under
usual scenario. And even if it is considered that the
limit of normal operating conditions will be crossed, it
is not significantly as high as it really could be.

2. The cost or effect of a very imperative significant
software, system and website failure under intense
conditions in real time can be huge (or may be
catastrophic for the organization or entity owning the
software/system).

3. It is always better to be prepared for extreme
conditions rather than letting the system/software/web
services crash, when the limit of normal, proper
operation is crossed.

4. Testing carried out by the developer of the
system/software/website may not be sufficient to help
expose conditions which will lead to crash of the
system/software when it is actually submitted to the
operating environment.

5. It's not always possible to reveal possible problems or
bugs in a system/software, unless it is subjected to
such type of testing

CONCLUSIONS:
In this paper we are presented on overview of system
designed to help software development originations to
prevent Vulnerabilities in the software they developed.
Testing is reasonably expensive. Vulnerabilities discovery
Tool is very good, flexible technique to cut down cost and
time. Testing efficiency and usefulness is the criteria for
large coverage-based testing techniques. Present tool well
tested on Banking domain .

Vidyabhushan Anantrao Upadhye et al IJCSET | June 2011 | Vol 1, Issue 5,200-202

201

REFERENCES

1. Davis, G. McGraw, “Software Security,” IEEE Security & Privacy,
vol. 2, no. 2, 2004, pp. 80–83.
2. G. Hoglund and G. McGraw, Exploiting Software, Addison- Wesley,
2004.
3. Jones, C., Software Assessments, Benchmarks, and Best Practices.
2000, Reading, MA: Addison-Wesley. 659.
4. Jacquith, A., The Security of Applications: Not All Are Created Equal.
2002, @Stake Research. p. 12.
5. SANS Institute, The Twenty Most Critical Internet Security
Vulnerabilities (Updated) ~ The Experts Consensus Version 6.01. 2005.
6. Bishop, M. and S. Engle. The Software Assurance CBK and
University Curricula. in Proceedings of the 10th Colloquium for
Information Systems Security Education. 2006. University of Maryland,
Adelphi, MD
7. Conklin, W.A. Bottom-Up meets Top-Down: A new Paradigm for
Software Engineering Instruction. in Proceedings of the 10th Colloquium
for Information Systems Security Education. 2006. University of
Maryland, University Collage, Adelphi, MD
8. Conklin, W.A., Personal Communication: Discussion on secure
coding practices with graduate students and former students, W.A.
Conklin, Editor. 2005: San Antonio, TX.
9. Bloom, B.S., Taxonomy of Educational Objectives, Handbook I: The
Cognitive Domain. 1956, New York: David McKay Co Inc.
10. Howard, M., D. LeBlanc, and J. Viega, 19 Deadly Sins of Software
Security 2005: McGraw-Hill Osborne Media. 304.
 11. Howard, M. and D.C. LeBlanc, Writing Secure Code. Second Edition
ed. 2002: Microsoft Press. 650.
12. Institute, S.E., Build Security In. 2006, Strategic Initiatives Branch of
the National Cyber Security Division (NCSD) of the Department of
Homeland Security (DHS) https://buildsecurityin.uscert. gov/portal/.
13. Schneier, B., Applied Cryptography: Protocols, Algorithms, and
Source Code in C. 1995: Wiley.784.
14. Schneier, B., Secrets and Lies : Digital Security in a Networked
World 2004: Wiley. 448.

Vidyabhushan Anantrao Upadhye et al IJCSET | June 2011 | Vol 1, Issue 5,200-202

202

