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Abstract- Wireless communication systems are gaining 
importance especially with respect to mobiles phones and data 
devices because of their ease of use and mobility. The need for 
high data rate is growing since the multimedia applications are 
gaining popularity which needs high data rate and quality of 
service. Multiple Input Multiple Output (MIMO) transmission 
system is one of the recent and the most promising approach of 
the Smart Antenna Technology which uses multiple antennas 
in the transmitter and the receiver side and is currently 
followed for high-rate wireless communication. The capacity of 
MIMO systems is much better when compared to all other 
antenna configurations like SISO, SIMO, MISO. In MIMO, 
many receiver algorithms have been used for the detection of 
the transmitted symbols. This paper discusses some of the 
algorithms used and they are compared based on complexity 
and BER performance. Out of the discussed algorithms, 
Maximum Likelihood (ML) is found to be the best in terms of 
BER but the complexity increases exponentially with increase 
in number of transmitters. The Sphere decoding algorithm is 
gradually replacing ML as it reduces the computational 
complexity while maintaining the same performance as that of 
ML.The algorithms are simulated in MATLAB and BER 
performances are validated.  
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Single Input Single Output (SISO), Single Input Multiple 
Output (SIMO), Multiple Input Single Output (SISO), 
Maximum Likelihood detection (ML), and Sphere decoding 
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I. INTRODUCTION 

With the integration of Internet and multimedia 
application in next generation wireless communication, the 
demand for wide-band high data rate communication 
services is growing. As the available radio spectrum is 
limited, high data rates can be achieved only by designing 
more efficient signalling techniques. Recent trends in 
information technology have shown that large gain in the 
capacity of communication over wireless channels is 
feasible in Multiple Input Multiple Output (MIMO) systems.  
The MIMO channel can be constructed with multiple 
antenna arrays on either side of wireless link.  

Multiple Input Multiple Output (MIMO) has been one of 
the most promising technologies to improve performance of 
a wireless link. The advantage of MIMO system is to benefit 
the users with multipath propagation. MIMO improves the 
capacity and combats fading by different diversity 
techniques. Wireless systems using MIMO can significantly 

improve the spectral efficiency of a system .The two main 
techniques used in MIMO are diversity technique and the 
spatial multiplexing technique. The former improves the 
signal -to-noise ratio (SNR) and improves reliability while 
the latter improves the channel capacity without additional 
bandwidth. Spatial multiplexing is the method which is in 
practice nowadays.  
      The challenge in the practical realisation of a MIMO 
system lies in the efficient implementation of a detector in 
separating the spatially multiplexed signals. While coded 
MIMO schemes offer better performance than the uncoded 
and modulated schemes, its hardware complexity is 
practically formidable, especially for a system with more 
than 4 antennas on both transmitter and receiver. We start 
with uncoded MIMO schemes and also do a comparative 
study on the different receiver algorithms from both 
performance and complexity point of view. 

This paper is organised as follows. Section II discusses 
the basic model of a MIMO system. Section III deals with 
the various algorithms used in the receiver side. These 
algorithms are simulated and their performance is compared 
in Section IV .Section V concludes the paper by identifying 
the Sphere decoder replacing the ML algorithm as its less 
complex. 

II. MIMO SYSTEM MODEL 

 
We consider MIMO systems with MT transmit antennas 

in the transmitter side and MR receiver antennas in the 
receiver side. The block diagram is shown in figure 1.The 
transmitted matrix is a MT×1 column matrix s, where si is 
the ith component transmitted from the antenna i. We 
assume a Gaussian channel such that the elements of s are 
considered to be independent identically distributed (i.i.d) 
Gaussian variables. 

The channel matrix H is a MR ×MT complex matrix. The               
component hi j of the matrix is the fading coefficient from 
the jth transmit antenna to the ith receive antenna. We 
assume that the received power for each of the receive 
antennas is equal to the total transmitted power Es. We 
assume that the channel matrix is known at the receiver but 
unknown at the transmitter. 
      The channel matrix can be estimated at the receiver by 
transmitting a training sequence. If we require the 
transmitter to know this channel, then we need to 
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communicate this information to the transmitter via a 
feedback channel. The elements of H can be deterministic 
or random. The noise at the receiver is another column 
matrix of size MR × 1, denoted by n. The components of n 
are zero mean circularly symmetrical complex Gaussian 
(ZMCSCG) variables. Each of the MR receive branches has 
identical noise power of N0. The receiver operates on the 
maximum likelihood detection principle over MR receive 
antennas. The received signals constitute a MR × 1 column 
matrix denoted by r, where each complex component refers 
to a receive antenna. Since we assumed that the total 
received power per antenna is equal to the total transmitted 
power, the SNR can be written as 

 

                         γ = Es / N0.                                  (1)      
 
Hence, the received vector can be written as, 
 
                          r=Hs+n                                        (2) 
 
 

 
 

III. CAPACITY OF DIFFERENT ANTENNA   
CONFIGURATIONS COMPARED TO MIMO 

 
The capacity of different antenna configurations like SISO, 
SIMO, and MISO are compared with MIMO. The capacity 
of MIMO is found to be better than all the other 
configurations. The capacity of the different configurations 
is shown below: 

A.  Single-Input, Single-Output (SISO) 
      This is the conventional system that is used everywhere 
constituting one antenna on either end of the wireless link.           
For a given channel, we assume that the bandwidth is B, and 
a given transmitter power of P the signal at the receiver has 
an average signal-to-noise ratio of SNR. Then, an estimate 
for the Shannon limit on channel capacity, C, is 
            C ~ B. log2 (1+SNR)                                         (3) 
 

B. Single Input Multiple Output(SIMO) 
For the SIMO system, we have single antenna at 

the transmitter and MR antennas at the receiver. If the 

signals received on these antennas have the same amplitude 
on average then they can be coherently added to produce an 
increase in the signal power. Since there are MR sets of 
noise that are added incoherently it results in an MR fold 
increase in the noise power. Hence, there is an overall 
increase in the SNR. Thus, the channel capacity for this 
channel is approximately equal to 

C ~ B. log2 (1+ MR. SNR)                                (4) 
 

C. Multiple Input Single Output(MISO) 
In the MISO system, we have MT transmitting antennas and 
a single receiving antenna. The total transmitted power is 
divided up into the MT transmitter branches. Following a 
similar argument as for the SIMO case, if the signals add 
coherently at the receiving antenna we get approximately an 
MT-fold increase in the SNR as compared to the SISO case. 
Note here, that because there is only one receiving antenna 
the noise level is the same as in the SISO case. 

Thus, the channel capacity is approximately given as 
C ~ B. log2 (1+ MT  . SNR)                                       (5)   
 
D. Multiple Input Multiple Output(MIMO)  

The MIMO system can be viewed in effect as a combination 
of the MISO and SIMO channels. In this case, it is possible 
to get approximately an MT×MR -fold increase in the SNR 
yielding a channel capacity equal to  
      C ~ B. log2 (1+ MT . MR . SNR)                                    (6) 
  

Thus, we can see that the channel capacity for the MIMO 
system is higher than that of MISO or SIMO. However, we 
should note here that in all four cases the relationship 
between the channel capacity and the SNR is logarithmic. 
This means that trying to increase the data rate by simply 
transmitting more power is extremely costly. 

 
IV. COMMON RECEIVER ALGORITMS  

 
Several MIMO receiver algorithms are proposed in the 

literature. In this paper, a variety of these techniques will be 
evaluated using predetermined performance and complexity 
criterion. Some of the algorithms are discussed below. 

 
A. Zero Forcing(ZF) 

Zero Forcing is one of the linear detection 
techniques which linearly filter the received signals using 
linear filter matrices and independently decodes them. ZF 
can be implemented using the inverse of the channel matrix 
H (assumed to be invertible) to obtain the estimate of the 
transmitted vector s.  

˜s = H† r                                     
  = H† (Hs + n) 

           = s + H† n 
With the addition of the noise vector, ZF estimate, ˜s 

consists of the decoded vector plus a combination of the 
inverted channel matrix and the unknown noise vector. 
Because the pseudo inverse of the channel matrix may have 
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high power when the channel matrix is ill-conditioned, the 
noise variance is consequently increased and the 
performance is degraded. To alleviate the noise 
enhancement introduced, the MMSE detector was proposed, 
where the noise variance is considered in the construction of 
the filtering matrix. 

 
B. Minimum Mean Square Error (MMSE) 

Minimum Mean Square Error (MMSE) approach 
alleviates the noise enhancement problem by taking into 
consideration the noise power when constructing the 
filtering matrix .The vector estimates produced by an 
MMSE filtering matrix becomes 

ŝ = [[( H H H + (σ2I)) -1] HH] r                          (7) 
 

where σ is the  noise variance. The added term (1/SNR = σ2, 
in case of unit transmit power) offers a trade-off between 
the residual interference and the noise 
enhancement .Namely, as the SNR grows large, the MMSE 
detector converges to the ZF detector, but at low SNR it 
prevents the worst Eigen values from being inverted. At low 
SNR, MMSE becomes a Matched filter. 

[(H H H + (σ2I)) -1] HH  = σ2 H H                           (8) 
 

The MMSE receiver, on the other hand, can minimize the 
overall error caused by noise and mutual interference 
between the co-channel signals, but this is at the cost of 
separation quality of the signals. 

 
C. VBLAST Receivers 

Although linear detection techniques are easy to implement, 
they lead to high degradation in the achieved diversity order 
due to the linear filtering. Another approach that takes 
advantage of the diversity potential of the additional receive 
antennas, uses nonlinear techniques such as Successive 
cancellation (SIC).A new symbol detection algorithm called 
VBLAST/MAP (Maximum a posteriori Probability) that has 
a layered structure as VBLAST was introduced. This gives a 
better error performance at a slightly higher complexity. 
For the signal detection problem, (MAP) is defined as 

 
˜s = arg max {Pr (s| r is received)}                  (9) 

                   s є  A MT 

                 where  A is the modulation alphabet, mostly QAM 
alphabet This detection algorithm is a recursive procedure 
that extracts the components of the transmitted vector s 
according to a certain ordering (k1, k2 ... kMT) of the indices 
of the elements of ‘a’. Thus, (k1, k2 ... kMT) is a permutation 
depends on H but not on the received vector r. 

 
D. Successive Cancellation Algorithm (SUC) 

This algorithm provides improved performance at the cost 
of increased complexity. This method first detects the first 
row of the signal and then cancels its effect from the overall 
received signal. It then proceeds to the next row. Now the 
channel matrix has a reduced dimension of MR × (MT -1) 

and a signal dimension of (MT - 1) × 1. Then it does the 
same operation on the next row.  

 
E. Maximum Likelihood Receiver 

     This is an optimum receiver. If the data stream is 
temporally uncoded, the ML receiver solves 

 
         sˆ= arg min ||r-Hs|| 2                                (10) 

where sˆ is the estimated symbol vector. The ML receiver 
searches through the entire vector constellation for the 
most probable transmitted signal vector. This implies 
investigating S^MT combinations, a very difficult task. 
Hence, these receivers are difficult to implement, but 
provide full MR diversity and zero power losses as a 
consequence of the detection process. In this sense it is 
optimal. There have been developments based on fast 
algorithms employing sphere decoding. 
 

F. Sphere Decoding Algorithm (SD) 
In this section, the basics of SD are briefly reviewed, and 
outline the corresponding state of the art. 
 
A. Sphere Constraint 
The main idea in SD is to reduce the number of candidate 
vector symbols to be considered in the search that solves (10) 
without accidentally excluding the ML solution. This goal is 
achieved by constraining the search to only those points of 
Hs that lies inside a hyper sphere with radius h around the 
received point r. The corresponding inequality is referred to 
as the sphere constraint (SC): 
 
d( s) < h 2         with                       (11) 
 
B. Tree Pruning 
Only imposing the SC does not lead to complexity 
reductions as the challenge has merely been shifted from 
finding the closest point to identifying points that lie inside 
the sphere. Hence, complexity is only reduced if the SC can 
be checked other than again exhaustively searching through 
all possible vector symbols. Two key elements allow for 
such a computationally efficient solution: 
 
1) Computing Partial Euclidean Distances: We start by 
noting that the channel matrix H can be triangularized using 
a QR decomposition according to H = QR, where the 
MR×MT matrix Q has orthonormal columns (i.e., QH Q = 
IMT), and the MT ×MT matrix R is upper triangular. It can 
easily be shown that 
 

   with    = QHy = RsZF     

 

   where sZF is the zero-forcing (or unconstrained ML) 
solution sZF = H†y. The constant c is independent of the 
vector symbol s and can hence be ignored in the metric 
computation. In the following, for simplicity of exposition, 
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we set c = 0. If we build a tree such that the leaves at the 
bottom correspond to all possible vector symbols s and the 
possible values of the entry sMT define its top level, we can 
uniquely describe each node at level i (i = 1, 2,....., MT ) by 
the partial vector symbols s(i) = [si, si+1, ........,sMT ]T BPSK 
modulation. Now, we can recursively compute the (squared) 
distance d(s) by traversing down the tree and effectively 
evaluating d(s) in a row-by-row fashion: 
We start at level i = MT and set TMT +1

(s(MT +1)) = 0. The 
partial (squared) Euclidean distances (PEDs) Ti 

(s (i)) are then 
given by 
           Ti s (i) = T i+1 (s 

(i+1) ) + |ei (
s (i) )  |2                                     (12) 

with i = MT,MT – 1......1, where the distance increments 
|ei (

s (i) ) |2     can be obtained as 
 

 
i |2                              

(13) 
Finally, d(s) is the PED of the corresponding leaf:  
d(s) =T1(s). Since the distance increments are |ei (

s (i) )  |2                                          
nonnegative, it follows immediately that whenever the PED 
of a node violates the (partial) SC given by 
 
                          Ti   

(s
i
) <    r2                                                            (14) 

the PEDs of all its children will also violate the SC. 
Consequently, the tree can be pruned above this node. This 
approach effectively reduces the number of vector symbols 
(i.e., leaves of the tree) to be checked. 
2) Tree Traversal and Radius Reduction: When the tree 
traversal is finished, the leaf with the lowest T1(s) 
corresponds to the ML solution. The traversal can be 
performed breadth-first or depth-first. In both cases, the 
number of nodes reached and hence the decoding 
complexity depends critically on the choice of the radius r. 
The K-best algorithm approximates a breadth-first search by 
keeping only (up to) K nodes with the smallest PEDs at 
each level. The advantage of the K-best algorithm over a 
full (depth-first or breadth-first) search is its uniform data 
path and a throughput that is independent of the channel 
realization and the SNR. However, the K-best algorithm 
does not necessarily yield the ML solution. In a depth-first 
implementation, the complexity and dependence of the 
throughput on the initial radius can be reduced by shrinking 
the radius r whenever a leaf is reached. This procedure does 
not compromise the optimality of the algorithm, yet it 
decreases the number of visited nodes compared to a 
constant radius procedure. As an added advantage of the 
depth-first approach with radius reduction, the initial radius 
may be set to infinity, alleviating the problem of initial 
radius choice. However, in contrast to the K-best algorithm, 
a depth-first traversal does not yield a deterministic 
throughput. 
 
 
 

V. SIMULATION RESULTS 
The capacity increase in case of MIMO when compared to 
all the other configurations are simulated using MATLAB. 
(fig.7).The increase in capacity with various antenna 
configurations in MIMO are also plotted in fig.8.All the 
algorithms stated in section IV was simulated in MATLAB 
and ML was found to be the best in terms of BER 
performance. But the complexity of ML increases as the 
number of transmitters increase. Here a 4×4 and a 2 × 2 
systems are implemented both using PSK and QAM 
modulation. For VBLAST we have taken 8×12 system. The 
results have been extended to MIMO –OFDM also (fig.9). 

 
Fig.2 BER performance of ZF, MMSE and ML algorithms using 2×2 
QPSK modulation 
 

 
Fig.3 BER performance of ZF, MMSE and ML algorithms using 2×2 
QPSK modulation 

 

 
Fig.4 BER performance of SD, MMSE and ML algorithms using 4×4 
QAM modulation 
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Fig.5 BER performance of ZF, MMSE and ML algorithms using 4×4 
QPSK modulation 

 
Fig.6 BER performance of the combined VBLAST algorithms using 
8×12, 16- QAM modulation 

 

 
 

Fig.7 Capacity of different antenna configurations-SISO, SIMO, MISO, 
MIMO 

 
Fig.7 Capacity of different MIMO configurations-with different number 
of transmitters and receivers. 

 
Fig 9. BER Performance of the detection algorithms in MIMO – 
OFDM  using 4×4 system. 
 

VI. CONCLUSION 
The MATLAB results we can see that the capacity of 

MIMO is very high when compared with all the other 
configurations. The capacity of MIMO increases when the 
number of transmitters and receivers increase. 

From the MATLAB results we can see that ML has got a 
better performance in terms of BER. But the complexity 
increases as the number of transmitters increase. The Sphere 
Decoding algorithm is a solution for this problem. This 
reduces the complexity of ML. 

VII. FUTURE WORKS 

Our future work will be mainly concentrating on a new 
Sphere decoding algorithm which will reduce the hardware 
complexity and to develop a rapid prototype of MIMO 
based on it, interlinking with the FPGA. 
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