
A Self Analysing and Reliable SOA Model
Prachet Bhuyan#, Asima Das#, Durga Prasad Mohapatra*

#School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India
*Department of Computer Science & Engineering, NIT, Rourkela, Odisha, India

Abstract—Service Oriented Architecture (SOA) provides a new
way of application development by using existing services. The
required services are collected and loosely composed to meet the
user’s specification, where the architecture of SOA is dynamic
that is, it can change dynamically at run time to meet the new
requirements. This paper proposes an architecture which has
the capability to analyze the developed services by comparing
the user’s requirements. Finding a method for testing the
accuracy of a service is a challenge always. The architecture
provides a unified way of self analysis which evaluates the
perfectness of developed service, before its delivery, and to find
out its accuracy. This calculated perfectness is stored in the
service profile of that service. The database is maintained for
each service which helps for searching a required service to meet
user’s specification and for composition of a new service. When
this self analysis of the developed service does not satisfy to meet
the user’s requirement because of not satisfying any conditions,
it generates the fault. Fault is handled to provide the required
correctness for composition of the service by detecting the
services responsible for those faults. The architecture provides
both reliability and analysis capability by handling fault and by
searching a service based on accuracy which provides reliable
delivery of service.

Keywords— SOA, Self Analysing, Reliable, Composition, Service

I. INTRODUCTION

SOA supersedes over the traditional architecture due to its
dynamic nature of service composition. Service is an
encapsulated function that is different from other services in
the environment [1]. It accepts requests and returns one or
more responses by using any defined standard interfaces. A
service can be requested by a user or by another service. In
the current global systems in distributed network the services
are distributed over various platforms and it needs to search
the services. Composing loosely and dynamically services in
an efficient way to get the goal mapping to user’s
requirements is a difficult task.

For composition, all required services may not be available
in all the supporting platforms. The searching of services may
be affected due to network failure or errors, which may also
lead to unavailability of service. Sometimes searching a
service in distributed platform becomes inefficient due to the
complexity in the network. Without waiting for the
availability of the non-available services, these services can
be created to make the system efficient.

The rest of the paper is structured as follows: Section II
reviews SOA and web technology to adopt SOA. Section III
discusses the proposed architecture, its layers and their
working. Section IV discusses the self analysis of developed
services at the business execution and analysis layer. Section
V deals with the conclusion of this paper.

II. SOA AND ITS ADOPTION BY WEB TECHNOLOGY

Architecture is the fundamental organization of a system
embodied in its components, their relationship to each other

and the environment and the principles governing its design
and implementation [4].

SOA is an architecture where the main component is
service, when a consumer requires a service on demand it is
made available by a service provider. The service is searched
in a service registry by means of a broker and the user which
is the service consumer is connected to the service provider
which finally delivers the service.

Software developers are grouped into three parties in SOA
by means of their responsibilities. The main entities of SOA
are service consumer (Application builders / service
requesters), service brokers and service providers.

The service consumer is a client service, which requires a
service. The service consumer (web service client) locates
entries in the broker registry using various find operations
and then binds to the service provider in order to invoke the
required services. The service consumer executes the service
by sending a formatted request as specified according to the
contract. They can access multiple services if need arises.
Thus a target application is built through service discovery
and composing the required services instead of designing and
coding the required services.

The service provider delivers of the service. The service
provider when creates a service, it publishes the service
descriptions, like interface, access information, the service
contracts in the registry to access the service by service
consumer, other services etc. It can be a mainframe system, a
component, or some other type of software system that
executes the service request.

A service registry is a directory that contains the details of
the available services found in the network. It accepts and
stores contracts from service providers and responds to the
service consumers accordingly.

Service brokers publish the available services to the public
from service registry. Service brokers help to achieve this by
making the contracts public. Depending on the business
model, brokers can attempt to maximize look-up requests,
number of listings or accuracy of the listings.

Web Technology in order to adopt SOA includes WSDL
(web service description language), SOAP (Simple Object
Access Protocol) and UDDI (Universal Description
Discovery and Integration); WSDL is an XML based
interface definition language that defines service and service
description. SOAP is a simple messaging protocol designed
to exchange message on the Web. This is a XML based
platform independent and application language independent
protocol. UDDI is a specification which defines a way to
register the Information for publishing and discovering the
information about web services. UDDI depends on HTTP to
transfer the data and XML to describe the information. The
interaction and relationship among the Service Broker,
Service Provider and the Service Requestor is shown in the
web services architectural model in Figure 1.

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

227

III. PROPOSED ARCHITECTURE

In this section we propose a service oriented architecture.
The proposed architecture of SOA emphasizes on, analysing
the user’s requirement, there by composing the services
accordingly, execution analysis, for finding composition fault
and finally how to get a perfect service in a reliable way. It
includes six layers and four mechanisms dealing with those
layers. Below we discuss all these six layers and four
mechanisms in brief.

A. Layers of the proposed architecture

The proposed architecture is shown in the Figure 2. It
consists of six horizontal layers and four vertical layers.
Vertical layers handles different type of mechanisms included
with six horizontal layers. Each layer is described in brief.
Six horizontal layers are Data and Components Layer,
Specification and Analysis Layer, Service Layer, Process
Layer, Business Process Execution and Analysis Layer, and
Presentation Layer.

1) Data and Components Layer: Consists of older legacy
systems, older object-oriented system implementations,
and intelligence applications, Data repositories, old
reusable data, components which are responsible for
realizing functionality and maintaining the Quos (Quality

of service) of the services, enterprise assets, and
application servers.

2) Specification and Analysis Layer: This layer deals with
the customer/user specification and analysis of the
requirements. Based on application specification of
user’s, the usercondition_action database, service
specification and workflow specification are built. So,
this layer deals with two specifications that is service
specification, workflow specification.

3) Service Layer: The services that will be exposed reside
in this layer. The services can be discovered first and
then invoked, or choreographed into a composite service.
This layer contains mechanism to publish interfaces of
components as service descriptions and exposes for use.
If a service is not found, building of atomic services at
same platform takes place.

4) Process Layer: This layer deals with composition of
business services based on the mechanisms like
choreography or orchestration. This layer integrates
services together which are exposed in the service layer
according to the workflow specification to build a single
composite application.

5) Business Process Execution and Analysis Layer: This
layer deals with deployment and execution analysis. The
functionality of this layer is to analyse the developed
service to find out the errors. This layer analyses the
perfectness of the composed service, to find out the
differences between the newly built service and the
service as required by the user. When the self analysis
process, satisfied, the service is delivered for deployment
else finds the fault for further processing. The self
analysis process is described in more detail in Section IV.

6) Presentation Layer: At the presentation layer, the
developed services are exposed for delivery to the
customer by means of various interfaces. It is not a
mandatory layer in SOA. Now-a-days, this layer is
needed, because there is an increasing convergence of
standards, such as web services for Remote Portlets
Version 2.0 and other technologies that seek to leverage
web services at the application interface or presentation
level [3].

Four vertical layers that handle the mechanisms are as
follows.
a) Composition: Composition is included in service layer

and process layer. When an unavailability of a service is
notified after searching service registries, the service
layer initiates for atomic composition. The composition
at process layer deals with mechanism for composition of
the required services to develop the required composite
service. It works based on a knowledge base. The
knowledge base contains the service profiles and the
condition_action database, for services which are already
available. After composition, each service must have this
condition action database. Each condition_action
database of a service has the number of conditions that a
service must meet to perform correctly. For each
condition, there may or may not be one respective action
to satisfy that condition. For calculation of perfectness, a
value column is also there. The value 2 is taken for
primarycondition and value 1 for secondary condition.
When a new service is composed by taking a number of
services, a new condition_action database is created for

Figure 1. Web services architectural model [2]

Figure 2. A Proposed Architecture of self Analysing and
Reliable SOA

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

228

the composed service by adding all the condition_action
database of the services taken part in composition for
developing the new service.
The format of the condition action database for each
service is given in Table 1. Here the value for a service is
always equal to the primarycondition value of
usercondition_action database.

TABLE 1
CONDITION_ACTION DATABASE FORMAT

primaryc
ondition

Secondary
condition

primary_
value

seconda
ry_value

service

b) Fault Handling: While development and execution

analysis continues, fault tolerance is achieved by
handling composition fault. The composition fault for
services are found out by analysing their executions at
business process execution and analysis layer and these
faults are corrected by the process recycle, where the
recomposition takes place to handle the composition
error. Error for any wrong data input at the time of
execution can also be handled with rollback to the
previous session by storing the previous session variables.

c) Integration: This layer enables the integration of
services through the introduction of a reliable set of
capabilities, such as intelligent routing, protocol
mediation, and other transformation mechanisms, often
described as the Enterprise Service Bus. Web Services
Description Language (WSDL) specifies a binding,
which implies a location where the service is provided.
On the other hand, an ESB provides a location
independent mechanism for integration [3].

d) QoS: Quality of Service layer provides the capabilities
required to monitor, manage, and maintain QoS such as,
performance, and availability. This is a background
process through sense-and-respond mechanisms and
tools that monitor the health of SOA applications and
other relevant protocols and standards that implement
quality of service for a SOA [3].

B. Working of the Architecture

In this section, the explanation of the working of the
proposed architecture is given and it is shown in Figure 3.
The processes of the proposed architecture get activated when
a request from consumers arises. An application specification
is built containing the user requirements as conditions.
Conditions can be divided as primary condition and
secondary condition. Primary conditions are those needs of
the user, without which the service composed will never meet
the goal of user. Secondary conditions are those requirements
of the user without which also the service composed will be
able to meet the goal of user. Based on the requirements a
usercondition_action database is created having those
conditions that should satisfy to meet the user’s requirement
and called as usercondition_action database.

The process controller is the controller of the whole
process. User provides the application specification having
primary and secondary conditions. Based on the application
specification service specification and workflow specification
is built. A usercondition_action database is created which
stores the primary and secondary conditions specified in

application specification and the required actions where
needed. A required action may or may not be there to satisfy
the condition against the same row. The format of the
usercondition _action database similar to Table 1 is as
follows.

TABLE 2
USERCONDITION_ACTION DATABASE FORMAT

Primary
condition

Secondary
condition

Primary
value

Secondary
value

Service

Service specification is handed over to the service provider

and the services are collected accordingly from the service
registry. Then the collected services are handed over to the
process controller. The process controller then creates the
workflow specification for the services and handover the
collected services and the workflow specification to the
dynamic composer.

The application monitoring is done to keep track of the
processing, for data collection, while next processes continue.
So, till the end of processing, if any error occurs, that can be
obtained due to continuous process of data collection and
handled.

Dynamic composition of the service now takes place,
based on the workflow specification. If any atomic service is
not found, it is developed and tested by analysing the
execution.

At business process execution and analysis layer the
developed service is tested to analyse the execution. Self
analysis is done at this layer to find out the perfectness of the
built service in comparison with the user’s requirement.
Dynamic reconfiguration takes place in this case where a new
requirement arises or any service replacement has to take
place due to some composition error which gives rise to
recycle process.

 Figure 3. Workflow of the Proposed SOA Architecture

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

229

IV. SELF ANALYSIS OF DEVELOPED SERVICE

Self analysis of the developed service is carried out for

finding out the perfectness or correctness of the service. The
requirement is mapped based on the user’s requirement. It
provides a measure for accuracy. It also detects composition
faults while analysing the services and handles them in order
to provide reliability. New condition_action database is
analysed by comparing with the usercondition_action
database which was previously created, based on a user’s
requirement, at the time the requirement from the user arises.
The usercondition_action database has columns such as
primarycondition, secondarycondition, action, primary value
and secondary value. The new condition_action database also
has primaryconditions, which are the addition of all
primaryconditions of the condition_action databases of those
services that had taken part in composition of the new service.
Similarly secondaryconditions , which are the addition of all
secondaryconditions of the condition_action databases of all
those services, taken part in composition of the new service.
The service column indicates which service a particular
condition belongs. The primary conditions must satisfy to
meet the user’s requirement, with comparison to the
secondary conditions. We have taken the value for primary
condition as 2, and then value for secondary conditions
should be less than that primary condition value. So, we have
taken the value for the secondary condition as 1.

As an example: if user requires the account
details(account name, type, balance), customer details (name,
socialsecurityno, telephone) along with the address details
(street number, street name, postbox, city, state, country) of a
customer as a service then here the secondary conditions will
be zipcode and telephone. By excluding zip code accessing
the particular customer with address having name, street
number, street name, postbox, city, state, zip, and country is
another need. So, here zip code can be taken as a secondary
condition in the usercondition_action database. Similarly, we
can exclude telephone number making telephone as
secondary condition.

Let the service specification to build the service specify
use of three services account, customer and address having
their condition_action databases respectively as below. The
service profile contains the accuracy of that service, where
accuracy is found out by calculating the perfectness. Here
perfectness is best for service account, better for service
customer and the service address is a better service.

TABLE 3

 CONDITION_ACTION DATABASE FOR SERVICE ACCOUNT

TABLE 4

CONDITION_ACTION DATABASE FOR SERVICE CUSTOMER

TABLE 5
CONDITION_ACTION DATABASE FOR SERVICE ADDRESS

The usercondition_action database for the service is

created when a requirement arises. The usercondition_action
database for the above example is shown in Table 6.

TABLE 6

USERCONDITION_ACTION DATABASE TO DEVELOP THE SERVICE

primary
condition

secondary
condition

primary
_value

secondary
_value

service

account no 2 account
account
type

 2 account

amount 2 account
name 2 customer
social
securityno

 2 customer

 telephone 1 customer
streetno 2 address
streetname 2 address
postbox 2 address
city 2 address
state 2 address
 zip 1 address
country 2 address

If any of the primarycondition of the composed service is

not found in database of developed service then, the
developed service is not acceptable, because it will not satisfy
the primary requirement of the user. So, fault is detected and
this fault can be corrected by recycle process. For the purpose
of error handling the conditions responsible for errors should
be kept for further processing while execution analysis
continues.
Following is the Algorithm for Self Analysis

The algorithm for the analysis process of the developed
service is as follows:

1. Begin analysis.
2. initialize integer variables i, j and counter to ‘0’,

primary_value=2, secondary_value=1,
i=no_of_records in usercondition_action database,
j= no_of_records in condition_action database

3. for m= 0 to i
4. pc = primarycondition of usercondition_action

database.
5. for n = 0 to j
6. if pc = primarycondition column of new

condition_action database, then exit for
7. else display message ‘fault in service', so service is

not acceptable because of error in condition ’pc’.
Add 1 to counter. Store that respective related row

primary
condition

secondary
condition

Primary
_value

Secondary
_value

service

accountno null 2 null account

accounttype null 2 null account
amount null 2 null account

primary
condition

secondary
condition

primary
_value

secondary
_value

service

name 2 customer
socialsecurityno 2 customer

 telephone 1 customer

primary
condition

secondary
condition

primary
_value

secondary
_value

service

streetno 2 address
streetname 2 address

postbox 2 address

city 2 address
state 2 address

 zip 1 address

country 2 address

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

230

of usercondition_action database in the database
called error_condition.

8. next
9. next
10. find out the number of primaryconditions and

number of secondaryconditions from
usercondition_action database; and number of
primarycondition and number of
secondaryconditions of new condition_action
database respectively and store in variables no_of_
primary, no_of_secondary, no_of_ primary1,
no_of_secondary1 respectively.

11. minperfectvalue = no_of_ primary * primary_value.
12. maxperfectvalue = (no_of_

primary*primary_value)+(no_of_secondary*second
ary_value).

13. newperfectvalue = (no_of_
Primary1*primary_value) + (no_of_secondary1*
secondary_value).

14. if (newperfectvalue = perfectvalue) then
perfectness= "best”. The developed service is a
‘Best’ service to accept.

15. if (newperfectvalue > minperfectvalue) then
perfectness= “better”. It is a ‘Better’ service and can
be acceptable.

16. if (newperfectvalue = minperfectvalue) then
perfectness= “good”. The developed service is
‘Good’ and the service can be acceptable.

17. if counter >0 then recycle.
18. end.

If usercondition_action database has 100 primary

conditions and 50 secondary conditions, then the need is to
satisfy at least those 100 primary conditions excluding
secondary conditions. Then the condition column of the new
condition_action database of the composed service should
have at least those 100 primary conditions to satisfy the
requirement. The condition column may have primary
conditions along with all those secondary conditions or may
have few secondary conditions with all those primary
conditions.

By taking value 2 for primaryconditions and 1 for
secondaryconditions, if we get all the services to compose the
required service with both primary as well as secondary
conditions as primary condition in the available service then
the maximum perfect value will be 250 which specifies the
service as best. The minimum perfect value will be 200,
where the need is to satisfy the primary conditions only
which specify the service as good, where we can exclude all
the secondary conditions. Any value within the
maxperfectvalue and minperfectvalue indicates, all primary
conditions along with some secondary conditions have been
satisfied, which makes the service a better one.

Suppose, the service in the above example, is composed
to analyse the perfectness. The condition_action database of
the developed service will have the database given in Table 7
as follows by taking the above three available service’s
condition_action databases and adding it. The perfectness
calculated will be better because the condition column have
all the primary conditions of usercondition_action database
and excluded the secondary condition.

TABLE 7
CONDITION_ACTION DATABASE FOR THE NEW DEVELOPED SERVICE

primary
condition

secondary
condition

primary
_value

secondary
_value

service

Accountno 2 account
accounttype 2 account

Amount 2 account
Name 2 customer
social
securityno

 2 customer

 telephone 1 customer
Streetno 2 address
Streetname 2 address
Postbox 2 address
City 2 address
State 2 address

Country 2 address

So, according to the algorithm Here, no_of_ primary=11,
no_of_secondary=2, no_of_ primary1=11, no_of_secondary1
=1.

minperfectvalue= (no_of_ primary * primary_value) =22.
maxperfectvalue = (no_of_ primary* primary_value +

no_of_secondary * secondary_value) =24.
Newperfectvalue=no_of_ primary1* primary_value +

no_of_secondary1 * secondary_value=23.
then, (newperfectvalue > minperfectvalue), so the

perfectness=better.
The recycle process is to handle faults detected at the time

of execution analysis of the developed service .It deals
mainly with the composition faults. It includes searching the
conditions responsible for failure. It is possible by searching
the error_condition database and verifying that particular
condition. It leads to recomposition of the service. The
recomposition takes place in the similar way as the
composition takes place. So it is an error handling process
which helps the recovery from wrong service composition
fault. This is a forward error recovery process. The needed
atomic service composed by taking the conditions present in
error database and its condition_action database is created.
This condition_action database is then added to the
previously created new condition_action database to create
the correct new condition_action database for the required
service and again analysed to find out its perfectness.

When the service analysis successfully ends with an
acceptable service then the service profile for that service
maintains the calculated perfectness. The calculated value for
perfectness is stored in a variable called perfectvalue.
Perfectvalue provides the perfectness of the service which is
the accuracy of the service. While registering the service, in
service registry, accuracy about the service is also mentioned.
This provides a reliable way to choose the existing service
based on the criteria of accuracy as needed, by finding the
data directly from the registry.

Case Study: The following is the case study by taking
Bank as the consumer of the proposed SOA.

The main purpose of the bank is to handle customers’
accounts to provide good services for its customers. For this
purpose of the bank it needs to keep all the details of the
account holders / bank customers. So, the job is to keep all
the details of the customer’s account and the details of

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

231

customers along with their address details. So, following are
three cases to achieve this purpose of the bank.

Case 1: To have all the details of the customer’s account.
Case 2: To have all the detail of the customers, for their

unique identification.
Case 3: To have all the detail of the customers by which a

contact through letter can be possible whenever needed.
To accomplish the required task, three atomic services

account, customer and address are needed for Case 1, Case 2,
and Case 3 respectively. So, the requirements of the bank
will be fulfilled by a service which needs to be composed by
taking these three services. With reference to the layers of the
proposed architecture following functions are performed by
the layers.

Specification and analysis layer: When the requirement
comes first it is analysed in the ‘specification and analysis
layer’ .The requirement specification are in the form of
primary and secondary requirements and is called as
primarycondition and secondary condition respectively.
Primaryconditions are those requirements of the customer
without fulfilling which the goal will never achieve.
Secondarycoditions are those conditions those requirements
of the customer without which also we can achive the goal.
Based on the requirement the usercondition _action database
is then created which will be similar to Table 6.

 Data and component layer: Based on the requirement the
usercondition_action database for the required service is
searched in the service registry, which contains the list of
existing services and their details. In this case following will
be the usercondition_action database with the related existing
service name filled against the respective row of the
conditions. Here the atomic services account, customer and
address are already present in the service registry. So the
complete usercondition_action database will be similar to
Table 7.

If any of the atomic services is not present in registry for
example let the service account is not present then the
usercondition_action database will be as in Figure 8. In this
case the conditions against the row without having the service
column are taken for atomic composition. Here the conditions
are accountno, type and amount. This composition takes
place in service layer and the atomic service account is
created by taking all these 3 primary conditions.

TABLE 8
USERCONDITION_ACTION DATABASE WHEN SERVICE ACCOUNT IS NOT

PRESENT IN SERVICE REGISTRY
primary
condition

secondary
condition

primary
_value

secondary
_value

service

account no 2
account
type

 2

amount 2
name 2 customer
socialsecu
rityno

 2 customer

 telephone 1 customer
streetno 2 address
streetname 2 address
postbox 2 address
city 2 address
state 2 address
 zip 1 address

country 2 address

Service layer: The atomic composition is performed in
service layer by taking conditions of the vacant service
column of usercondition_action database. Whenever a service
is composed a condition_action database is created. Services
account, customer and address are physically present in the
service layer. All the existing services are exposed in this
layer for the composition. The existing services at the time of
composition have their condition_action databases. So,
services account, customer and address have their
condition_action databases as given in Table 3, Table 4, and
Table 5 respectively.

Process layer: In the process layer the composite
composition takes place by taking those services
condition_action databases, which services are found against
the service column of usercondition_action database. To
compose the final service needed in order to fulfil the above
requirement of the bank, that is condition_action databases of
services account, customer and address taken and a new
condition_action database is created by adding all the primary
conditions and secondary conditions of these
condition_action databases. Hence the new condition_action
database composed for this case will be as given in Table 7.

Business Process Execution and Analysis Layer: After
composition of the new condition_action database the new
condition_action database is compared with the user
condition_action database and the perfectness of the service
is found out by taking the given algorithm for self analysis.
The composition faults are also detected whenever a primary
condition of usercondition_action database is not found in the
new condition_action database and is stored in error database.

Implementation snapshots of self analysis as follows:

Figure 4. NewCondition action Database

Figure 5. Self-analysis of above newcondition_action database
with comparison to usercondition_action database

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

232

In Figure 5 the new composed service is a better service
having all the primary conditions and secondary conditions
are equal, in both newcondition_action database and
usercondition_action database.

In Figure 6 the new composed service have the fault in

composition service having all the primary conditions that are
not equal in both newcondition_action database and
usercondition_action database as streetno is not present in
newcondition_action database.

V. CONCLUSION

This work proposes a self analyzing and reliable SOA. The
architecture has the facility to analyze the developed service
by comparing with the actual user requirement to find out
perfectness of the service, thereby it finds out, how much a
service is accurate. This accuracy about the service is stored
in service registry by which it provides a reliable way of
choosing out the exact required service from the registry of
existing services based on the criteria of service perfectness
or accuracy. Self analysis performs automatically to find
execution analysis. The Architecture has the capability to
detect the composition fault at the time of analyzing the
perfectness. A composition fault can be detected when
unsatisfied with the perfectness and it has the facility to go
for recycle process, to eliminate the related fault. This helps
for better composition of the service that satisfies the user
requirement. Hence on a concluding note it can be addressed
that the proposed architecture provides reliability and
efficient services to the users.

REFERENCES
[1] Hongqi Li, Zhuang Wu “Research on Distributed Architecture Based

on SOA”, International Conference on Communication Software and
Networks, IEEE, 2009.

[2] M.N.Huhns and M.P.Singh “Service-oriented computing: key
concepts and principles” IEEE internet computing, pp. 75-81, Jan-Feb.
2005.

[3] Ali Arsanjani, “Service-Oriented Modeling and Architecture: How to
Identify, Specify, and Realize Services for Your SOA”, whitepaper
from IBM, Nov 2004, available at: http://www-128.ibm.com/
developerworks/webservices/library/ws-soa-design1/.

[4] http://blogs.technet.com/b/michael_platt/archive/2006/03/27.
http://blogs.technet.com/b/michael_platt/archive/2006/03/27/423300.a
spx

Figure 6. Self-analysis of above newcondition_action database
with comparison to usercondition_action database

Prachet Bhuyan et al IJCSET | June 2011 | Vol 1, Issue 5,227-233

233

