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Abstract— Security is an important issue for networks, 

especially for those security-sensitive applications. In the entire 
environment of security, it is necessary to ensure privacy. This 
Paper provides share key refreshing technique for maintaining 
the security of the system, even when some nodes are in control of 
attacker. It provides an automated recovery of the security of 
individual components, avoiding the use of expensive and 
inconvenient manual processes. The technique can be used with 
threshold cryptography, by providing periodic refreshments of 
the sensitive data held by the servers. This way, the proactive 
approach guarantees uninterrupted security as long as not too 
many servers are broken into at the same time. In this paper a 
solution is provided to enhance security among communication 
channel. Towards this a share key refreshing technique is 
represented in the form of algorithm in which some trusted nodes 
share the private key, which is a part of private-public key pair. It 
is distributed on some trusted systems according to threshold 
cryptography. Now once shares are distributed they must be 
refreshed otherwise attacker can easily obtain those shares and 
generate the key. Once shares are distributed they must be 
refreshed after some period of time. We also present 
implementation details for this scheme.  

 
Keywords— Threshold Cryptography, Proactive Security, Attacks, 
Secret sharing, Distributed Cryptography, Share Refreshment. 

 
I. INTRODUCTION 

Security is an important issue for networks, especially for 
those security-sensitive applications. In the entire environment 
of security, it is necessary to ensure privacy. Everyone in the 
group must be aware of the security goals and to be conscious 
in achieving them [1]. As data communication is becoming 
more pervasive, complex and the use of digital data becoming 
much more widespread, data security has become a wider, 
more complex and more important problem. Cryptography can 
be an important tool to help in improving security. Since 
public key cryptography and threshold cryptography is widely 
used now a day for security purpose but still there is a problem 
arises regarding the safety of the private key. There is no 
secure mechanism still be achieved in order to protect the 
private key from the attacker [2]. For this proactive share key  
refreshing technique provides a mechanism, in which the 
shares are again divided into sub shares and transferred to each 
other for updating the old shares. In such a way attacker cannot 
easily obtain all the shares at the same time before 
refreshment. Proactive security (PC) combines the ideas of 
distributed cryptography with the refreshment of secrets. In 
this approach, shares are periodically renewed in such a way 
that information gained by the attacker in one time periods is 
useless for attacking the secret after the shared are refreshed. 

These are the core properties of the Proactive Security. It 
doesn’t wait until a break-in is detected. Instead, it invokes the 
refreshment periodically in order to maintain uninterrupted 
security or force detection [3]. This novel approach ensures 
secrecy and authenticity of communication, with automated 
refresh of the secret keys. 
Cryptography offers a set of sophisticated security tools for a 
variety of problems, from protecting data secrecy, through 
authenticating information and parties, to more complex multi-
party security goals. Yet, the most common attacks on 
cryptographic security mechanisms are system attacks. Such 
system attacks are done by intruders (hackers, or through 
software trapdoors using viruses or Trojan horses), or by 
corrupted insiders. Unfortunately, such attacks are very 
common and frequently quite easy to perform, especially since 
many existing environments and operating systems are 
insecure (in particular Windows). 
As a result, computer and network security involve a set of 
tools to prevent and detect intrusions, and to regain control 
over a computer from the attacker. Detection is particularly 
important, since once an attack is detected on any one 
computer system administrators is alarmed and are likely to 
regain control from the attacker- on most or all computers. 
Furthermore security measures are likely to be tightened, and 
at least some security exposures found and fixed. Therefore, 
attackers often do their best to avoid detection, and indeed 
often give up control over a computer rather than risk being 
detected [3]. During this time when the Internet provides 
essential communication between tens of millions of people 
and is being increasingly used as a tool for commerce, security 
becomes a tremendously important issue to deal with. There 
are many aspects to security and many applications, ranging 
from secure commerce and payments to private 
communication and protecting passwords [4]. One essential 
aspect for secure communications is to protect private key 
using proactive security from adversary which is the focus of 
this paper. 

 
II. KEY SECURITY ISSUES 

As our world is growing increasingly dependent on digital 
systems, security of these systems is becoming increasingly 
critical. In addition to accidental failures, threats of malicious 
attacks must be addressed by the security systems of today and 
tomorrow. Connectivity of the digital systems has become an 
integral part of their functionality. However, connectivity 
could also provide malicious attackers with an easy access to 
the system, in particular allowing them to mount their attacks 
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even from the other side of the globe. Physical isolation is 
hardly ever an option in achieving protection, and so most 
systems must rely on other mechanisms for their security. 
These mechanisms, be they simple passwords authentication or 
sophisticated cryptographic tools, generally depend on 
maintaining some secrets keys. Thus, security of a system 
hinges on the condition that the attackers cannot gain access to 
its secret keys. This condition may be difficult to satisfy, 
especially since these keys must be actively used by the 
system. One might try to make it harder for an adversary to 
expose the secret keys. To this end one might utilize special 
devices (such as smart-cards), multiple factor mechanisms 
(e.g., regular passwords, combined with smart-cards, and 
biometric mechanisms), etc. But our experience shows that no 
matter how strong is the protection of the secret keys, it is very 
likely that a sufficiently motivated adversary will succeed 
sooner or later and expose these keys. Thus, an experienced 
security systems designer will plan explicitly for the event of 
key exposures.  

 
 A.Key Attacks 
The problem with keys in general is that there are so many 
ways to get at them. Types of attacks on the key are: 
1.Wireless Attacks: Most of the things that have been said so 
far about protecting keys apply regardless of the type of 
security system we are using. They are not specific to wireless. 
Wireless, of course, introduces a whole new set of 
opportunities for attackers trying to get keys because it is so 
easy to access the data streams, even though they may be 
encrypted. The problem for the attacker is that the data is 
encrypted and he/she needs the keys. Assuming we don't 
change the keys, he/she has as much time as he/she wants to 
capture sample messages and analyze them. 
2. Brute force attacks: The brute force method means that an 
attacker tries every possible key until he finds a match. Given 
that he knows the ciphertext and protocol, he would start with 
a key value of all zeros, decrypt the message, and see whether 
it matches the plaintext (or any fragments he has). If he keeps 
adding 1 to the key value, in principle, he will sooner or later 
hit on the right key because all possible keys will have been 
tried. The time taken for a brute force attack depends on the 
key size, or more correctly the key entropy. This is one of the 
reasons that government export controls tend to be set 
according to key length. For example, it used to be that you 
could not export any security technology from the United 
States with a key length of more than around 40 bits. Because 
the 40-bit key is crackable, many security systems use larger 
keys. The use of a longer key really renders brute force attacks 
completely ineffective, assuming the underlying cryptographic 
algorithm has no weaknesses. Let's suppose supercomputers 
become faster and we can try a hundred keys in a microsecond. 
With a 104-bit key, you would still need (on average) 
3,200,000 billion years to find the right key. 
3. Dictionary Attacks: Given that we can so easily defeat brute 
force attacks by adding a few bits to the key, any attacker with 
an IQ in the double digits will look for another approach. 
Here's the idea: Instead of trying every possible key, try only 
those keys that we think the user is likely to use. For example, 

the attacker could assume that the key is made up entirely of 
letters and numbers, as is typical for user-chosen passwords. 
This reduces key entropy. A 104-bit key is now only as 
effective as a 78-bit key because only 6 bits of every byte are 
used. However, 78 bits is still uncrackable using brute force so 
the attacker must narrow down further. This approach to 
reducing the number of keys to test brings us to the idea 
behind a dictionary attack. In a dictionary attack, the enemy 
uses a huge dictionary, or database, containing all the likely 
passwords. This will certainly include every word in the 
English language and may contain other languages as well. 
4. Algorithmic Attacks: If the enemy cannot mount a brute 
force or a dictionary attack, another approach is to try to break 
the algorithm that is, to try to find a flaw in the way the 
encryption is performed that might expose the key value. It is 
difficult to describe these algorithmic attacks generally 
because they depend so much on the algorithm and 
understanding the weaknesses often requires that we are a 
cryptographic expert. However, there is a straightforward 
analogy with safe breaking. 
 
 B.Key Security Goals   
The goals for a security system design can be formulated as 
threefold:  
(a) Make key exposures as difficult and as expensive for 
adversaries as possible, 
(b) if/when the keys are exposed, minimize the damage; 
(c) Recover from the exposures. 
 

III. DISTRIBUTED CRYPTOGRAPHY 
In general, it is not convenient that the security of a 

system relies on the behavior of a single agent. Let us consider, 
for instance, the case of a certification authority, a trusted 
entity that certifies that a given public key corresponds to a 
given user. Clearly, a certification authority that is composed 
by several independent servers is more reliable than one that is 
formed by a single server.  
Distributed cryptography, introduced in 1987, makes it 
possible to design cryptographic systems in which some 
operations require the collaboration of several users. 
Concretely, a distributed cryptosystem is a public key 
cryptosystem in which the secret key is shared among a set of 
users. Only some qualified subsets of users will be able to 
perform the operation related to the secret key (decrypting or 
signing). In this way, the security of the system is increased, 
because the loss or theft of several shares of the secret key 
does not necessarily break the system’s security. Several 
distributed cryptosystems have been proposed until now. Most 
of them have a threshold structure, that is, the sets of users that 
are able to execute the protocol are those having a certain 
number of elements. Due to this fact, distributed cryptography 
is called also in general threshold cryptography. Distributed 
cryptography is currently a very active research field that is 
related to many different areas in cryptology. There are several 
open problems whose solution would lead to the construction 
of more efficient and versatile distributed cryptosystems. 
Many of these problems are related to the different 
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cryptographic protocols that are used as pieces of a distributed 
cryptosystem[3]. 
 

IV. THRESHOLD CRYPTOGRAPHY 
Threshold cryptography is the technique of distribution of 

trust. Threshold Cryptography is based on (n, t) scheme where 
n is number of server and threshold t is the number of node 
which recovers the original message, whereas it is infeasible 
for at most (n-t) servers to recover the original message. In 
Threshold Cryptography, private key (k) is distributed to n 
number of nodes, assign one share to each server. Each server 
is known as a shareholder. Each shareholder generates a partial 
signature using own partial private key. Combiner is a node 
which verifies the trust of the servers according to the 
protocols defined on them. It receives the partial signature 
generated by all the servers, while accepting only those partial 
signatures generated by trustworthy servers. With t correct 
partial signatures, the combiner is able to compute the 
signature for the certificate. However, compromised servers 
cannot generate correctly signed certificate by themselves, 
because they can generate at most (n-t) partial signatures. A 
combiner can verify the validity of a computed signature. In 
case verification fails, the combiner tries another set of partial 
signatures [11]. 

 
A Problems with Threshold Crptography 
      When we use public key cryptography technique, once the 
keys are distributed then there is no mechanism to keep them 
secure against attacks. So if once attackers manage to attack on 
the system then he can easily get the private key.  But now we 
have so many technologies like threshold cryptography which 
uses the distributed key method where key is not kept on a 
single system but one has to divide the private key into sub 
parts and then distribute trust/private key share (one from key 
pair) among trusted nodes. But still they face a problem that 
once private key shares are distributed then they cannot be 
refreshed because there is no previous mechanism to do this. 
Because of this the probability of compromising trusted nodes 
and getting the shares of the key increases, which in turn can 
help the attacker to get the whole private key of his need. 

In threshold cryptography the private key is divided using 
some algorithm like RSA, ELGAMAL etc., and distributed 
between the trusted servers. These servers do not have the 
whole private key, but the part of the key. So it is difficult for 
the attacker to obtain the key. But the problem arises when the 
attacker is able to gain all the t shares from (n, t) threshold 
scheme by attacking on all the trusted nodes. This work is 
moved around the solution of this problem[12]. 
 
B Proposed Approach 
       The threshold cryptography gives a way to convey a shared 
key to a node without using any key infrastructure also is very 
suitable for a secret sharing in network. However, given t or 
more shares in an (n, t) threshold cryptography scheme the 
secret S can be found.  Without the share refresh and with 
finite span of time it is not very hard for malicious nodes to 
compromise at least t share holder nodes and finally obtain the 
secret key. To make each share refresh without disclosure of 

any share or a secret key itself. Proactive secret sharing can be 
employed. It allows refreshing all shares by generating a new 
set of shares for the same secret key from the old shares 
without reconstructing the secret key. In the proposed work the 
same approach has been implemented. 
 

V. PROACTIVE SECURITY 
Proactive security is a mechanism for protecting against 

such long-term attacks. It combines the approach calling for 
distribution of trust with the one of periodic refreshment: 
 
                         Proactive = Distributed + Refresh. 
 
        That is, first distribute the cryptographic capabilities 
among several servers. Next, have the servers periodically 
engage in a refreshment protocol. This protocol will allow 
servers to automatically recover from possible, undetected 
break-ins, and in particular will provide the servers with new 
shares of the sensitive data while keeping the sensitive data 
unmodified [3]. Proactive security shows how to maintain the 
overall security of a system even under such conditions. In 
particular it provides automated recovery of the security of 
individual components, avoiding the use of expensive and 
inconvenient manual processes. The technique combines two 
well-known approaches to enhance the security of the system: 
distributed (or threshold) cryptograph, which ensures security 
as long as a threshold (say half) of the servers are not 
corrupted; and periodic refresh (or update) of the sensitive data 
(e.g. keys) held by the servers. This way, the proactive 
approach guarantees uninterrupted security as long as not too 
many servers are broken into at the same time. Furthermore, it 
does not require identification when a system is broken into, or 
after the attacker loses control; instead, the system proactively 
invokes recovery procedures every so often, hoping to restore 
security to components over which the attacker lost control[8]. 
The main new contributions (assumptions) are: 
 

 A secure initialization mechanism, with reasonable, 
practical requirements from the computer and 
operating system. Specifically, all we require is a 
secure boot process (which is a good idea anyway, 
against viruses - and easily done with signed code); 
and a per-machine secret-private key pair, with the 
public key protected from modification (e.g. in ROM 
or write-once EEROM), and the secret key in erasable 
memory (e.g. disk). Previous results required storage 
of parameters specific to the particular application 
(such as the group’s public key) in secure storage, 
which is not practical. 

 A set of application program interfaces (APIs) that 
allow the use of the toolkit to improve security, 
specifically provide security in spite of break-ins into 
computers, of existing applications, as well as the 
development of new applications which are proactive 
secure. 

The security of any proactive solution relies heavily upon its 
correct architecture and integration with existing, non-
proactive, operating system. The design of system, which does 
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not view the proactive model as series of protocols but, rather, 
as a security enhancement of the operating system which 
transforms it into a proactively secured system via the 
appropriate use of proactive protocols, has not been defined 
nor implemented in the past. We show that it is possible to 
transform general applications which are required to remain 
secure for long periods of time to operate in a proactive 
environment, namely proactivizing applications [14]. 

To this end, we define architecture for a proactive 
operating environment which serves as a platform on which 
standard applications can be proactivized. This operating 
environment consists of a network of servers which are set up 
once, which we call the proactive network.  

Each server is instantiated at boot time by the operating 
system and is checked periodically, also by the operating 
system. Servers can recover data (both public and private data) 
from other servers in the proactive network, if such data is 
corrupted or lost.  Once the proactive network is set up, any 
application can run on the top of the network and request 
proactive services by the means of API. 

 
VI. SHARE REFRESHMENT 

A. Share Refreshment methodology 
Proactive schemes are proposed as a countermeasure to 

mobile adversaries. A proactive threshold cryptography 
scheme uses share refreshing, which enables servers to 
compute new shares from old ones in collaboration without 
disclosing the service private key to any server.  The new 
shares constitute a new (n, t + 1) sharing of the service private 
key. After refreshing, servers remove the old shares and use 
the new ones to generate partial signatures. Because the new 
shares are independent of the old ones, the  adversary cannot 
combine old shares with new shares to recover the private key 
of the service[7].Thus, the adversary is challenged to 
compromise t + 1 servers between periodic refreshing. Share 
refreshing relies on the following homomorphic property. If 
(s1 1, s12, . . . , s1n) is an (n, t + 1) sharing of k1 and (s21, s22, 
. . . , s2n) is an (n, t + 1) sharing of k2, then (s11 + s21, s12 + 
s22, . . . , s1n + s2n)v is an (n, t + 1) sharing of k1 + k2. If k2 is 
0, then we get a new (n, t + 1) sharing of k1.  

Given n servers. Let (s1, s2, . . . , sn) be an (n, t + 1) 
sharing of the private key k of the service, with server i having 
si. Assuming all servers are correct, share refreshing proceeds 
as follows: first, each server randomly generates (si1, si2, . . . , 
sin), an (n, t+1) sharing of 0. We call these newly generated sij 
’s subshares. Then, every subshare sij is distributed to server j 
through a secure link. When server j gets the subshares s1j , s2j 
, . . ., snj, it can compute a new share from these subshares and 
its old share (s0j = sj + _n i=1sij ). Share refreshing must 
tolerate missing subshares and erroneous subshares from 
compromised servers. A compromised server may not send 
any subshares.However, as long as correct servers agree on the 
set of subshares to use, they can generate new shares using 
only subshares generated from t + 1 servers. For servers to 
detect incorrect subshares, we use verifiable secret sharing 
schemes. A variation of share refreshing also allows the key 
management service to change its configuration from (n, t+1) 
to (n0, t0 +1). This way, the key management service can 

adapt itself, on the fly, to changes in the network: if a 
compromised server is detected, the service should exclude the 
compromised server and refresh the exposed share; if a server 
is no longer available or if a new server is added, the service 
should change its configuration accordingly. The essence of 
the proposed solution is again share refreshing. The only 
difference is that now the original set of servers generate and 
distribute subshares based on the new configuration of the 
service: for a set of t + 1 of the n old servers, each server i in 
this set computes an (n0, t0 + 1) sharing (si1, si2, . . . , sin0) of 
its share si and distribute subshares sij secretly to the jth server 
of the n0 new servers. Each new server can then compute the 
new share from these subshares. These new shares will 
constitute an (n0, t0 + 1) sharing of the same service private 
key. More generically we can say that refreshments of the 
shares can be performed as follows:Each server i chooses a 
random t-degree polynomial fi(X) such that fi(0)=0. Server i 
then sends to server j the value sij=fi(j) mod q. still Server j 
then computes its new refreshed share s’j as follows: s’j = sj + 
s1j + ... + snj mod q and erases its old share. The new shares 
s’i lie on the polynomial f’(X) = f(X) + f1(X) + ... + fn(X) 
which is of degree t and whose free term is still s so the new 
shares define the same secret. Recovery of the share sr=f(r) 
mod q of server r is also possible as follows [16]. Each server i 
chooses a random t degree polynomial gi(X) such that gi(r) =0 
(by choosing the free coefficient of gi(X) to satisfy this 
condition). Server i then sends to server j the value gij=gi (j) 
mod q. Server j then computes its new share g’j : g’j = g1j + ... 
+ gnj mod p. The new shares g’i lie on the polynomial g’(X) = 
g1(X) + ... + gn(X) which is still of degree t and satisfies g’(r) 
= 0. Now, each server i sends to server r the value si+g’i mod q 
= f(i)+g’i mod q. Server r interpolates these values to construct 
the polynomial f(X) + g’(X) from which it derives f(r)+g’(r) 
mod q and this is exactly sr=f(r) mod q, its lost share[2]. 
 
C.Share Refreshment Algorithm 
Key Generation: 
1. Randomly choose 2 prime numbers p and q 
Compute a(n) = (p-1) * (q-1)   (i)   
 
Detemine server’s private key (d) as 

d = e-1 mod a(n)    (ii) 
 

Where e is server’s public key  
 2.  Determine the threshold (t) as 

            t>=n\2                                                  (iii) 
 

So that t < n and n should be greater than or equal to 2. 
Where n is number of trusted nodes  
Evaluate the Shares (Key distribution): 
3. Share generation is based on Shamir’s scheme 
Secret is a value S in the set of integers [0……….p-1]  
Where p is prime number.  
 Server (who is sharing the secret) generates t random numbers 
(a1… at) and put these values into given the polynomial. 

        f (X) = (S + a1X +…….+ atX
t)                (iv) 
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4. If f(X) is calculated for different nodes i.e. node 1, node 2, 
node 3 Where    X = 1, 2, 3………respectively. 
Each node receives own share.  
Share Refreshment:  
Each share holder randomly generates own sub-shares (e.g. 
(si1, si2… s in) on node i), and each subshare is mutually 
exchanged to refresh own share. Explained as below: 
5. Let (s1, s2, . . . , sn) be an (n, t) sharing of the secret key S of 
the service, with node i having si. 
6. Node i (i Є {1 . . . n}) randomly generates si’s subshares (si1, 
si2, . . . , sin) for an (n,t) sharing of 0. 
7. Every sub-share sij (j Є {1 . . . n}) is distributed to node j 
through secure link. 
8. When node j gets the sub-shares (s1j, s2j. . . snj), it computes a 
new share from these subshares and its old share with an 
equation: 
                                          s΄j  = sj  + Σn

i=1s ij                  (v)  
 
9. Now each share (s΄1, s΄2, ……. s΄n)   is an (n, t) sharing of 
the secret key S, because 

Σn
j=1 s ij   = 0        (vi) 

 
After each proactive secret sharing, all nodes will change 
(refreshed), so that old shares become useless. In such case, 
since it is impossible to obtain new shares from old share, a 
malicious node must collect at least shares before the 
refreshment of share which makes his job difficult. 
 

VII. IMPLEMENTAION DETAILS 
The Proactive Security software has been prototyped in Java 
1.6. 
 
A. Architectural Flow 
The project consists of various modules. At the very first step 
it is necessary to distribute the trust or the secret key to the 
trusted nodes or machines using (n,t+1) threshold 
cryptography. Suppose we have N trusted machines then there 
should be n shares of the key. In the figure5.1, it is shown that 
key is distributed among nodes using (n,t+1) threshold 
cryptography. These shares are distributed among trusted 
nodes (machines), which are the parts of the private key whose 
public key is distributed among all nodes. We are assuming 
that keys are already distributed among trusted nodes. After 
this my work has been started, in the next step, we have to 
generate a mechanism by which shares can be divided into 
subshares. Now all nodes share their subshares between 
themselves. They send their subshares through a secure 
communication channel, which can be obtained by using some 
cryptographic algorithm. By using this subshare mechanism, 
the shares are divided into subshares. Because of this we can 
refresh the shares of the nodes. And now if attacker wants to 
achieve all parts of the secret then he should have to attack on 
each and every node but at the same time the share refreshing 
mechanism works and refreshes the shares. Now attacker 
cannot achieve the whole shares because old shares are 
renewed before he got all shares. In this way this mechanism 
provides an efficient security. If any node becomes 
compromised by the attacker then that node can also be 

recovered. The compromised node can be detected by its 
behavior. So in this way we can obtain a more secure 
communication channel and it can be use for a long term. 
 
B. Implementation Issues 
The proactive environment architecture and its algorithms 
constitute quite a complex system to implement and test. As 
such, the Java language was a natural choice for 
implementation since it provides a fast and simple prototyping 
environment. Moreover, its portability across platforms was an 
important feature, since different nodes in the proactive 
network may have to run the toolkit on entirely different 
platforms (for example, our demo runs on a network of five 
nodes, which are Windows based). Yet, this choice of 
programming language had a number of implications. 
1. Erasing information from memory, which is an absolutely 
necessity for the correct implementation of secrets refresh, is 
an issue in all environments (due to virtual memory) and, in 
particular, in a garbage collected environment like Java, since 
garbage collectors typically copy memory as part of the 
collection process. 
2. The code for a Java program includes the code for the JVM 
(Java Virtual Machine), as well as the byte-code of all classes 
loaded (dynamically) by the machine in the course of its 
execution. Therefore, satisfying the code-validation 
assumption for Java programs may require assistance from the 
JVM, possibly by using mechanisms like signed classes or by 
writing a customized class loader. 
3. We were able to use some of the more advanced features of 
Java to simplify both the protocols and communication. All 
protocols and messages are implemented as subclasses of an 
abstract superclass. 
In this way all protocols are treated in a uniform way, which 
simplifies both the dispatch of messages to protocols and the 
addition of new protocols. In addition, we didn’t have to define 
‘protocol messages’ in a strict, well structured, way and parse 
them. Instead, all messages are sent as serialization of some 
object. 
 
C. API Implementation   
Using the Java language enabled us to implement the API 
between the server and its clients in a convenient and simple 
way. To write such an application firstly we have to write a 
class name as StartNodeServer for which we have to import 
various packages of java like:  
 
1) import java.math.BigInteger;  
2) import java.net.*; 
3) import java.util.Random; 
4) import java.io.*; 
 
ne more public class is created named ApplicationConstants in 
which all the port numbers are defined, for establishing 
communication between servers. This a common class called 
in all the other classes. Three more servers (trusted nodes) are 
defined, which takes part in share refreshing. These servers are 
those machines who shares the parts of the private key named 
as Node1Server, Node2Server and Node3Server. 
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For all these three machines we have three classes named 
Node1Server, Node2Server and Node3Server. The packages 
which are importing here as follows: 
1) import java.io.DataInputStream; 
2) import java.io.DataOutputStream; 
3) import java.io.IOException; 
4) import java.io.InputStream; 
5) import java.io.OutputStream; 
6) import java.math.BigInteger; 
7) import java.net.ServerSocket; 
8) import java.net.Socket; 
9) import java.net.SocketTimeoutException; 
 
To write a proactive application the client must write a class 
which is a subclass of the class ApplicationConstatnts. This 
superclass provides its subclass with methods to request 
services from the server, send messages to clients running on 
the other machines, and load new classes to the server.  
In addition, this class defines abstract methods which the 
subclass must implement and which the server uses to notify 
the client about the status of request and about incoming 
messages from other clients. 
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