
A Novel Approach Share Key Refreshing for Long
Term Protection in Distributed Cryptography by

Proactive Security
 Rajkumari Retoliya , Prof. Anshu Tripathi

Department of Information Technology ,Mahakal Institute of Technology
Ujjain, INDIA

Abstract— Security is an important issue for networks,

especially for those security-sensitive applications. In the entire
environment of security, it is necessary to ensure privacy. This
Paper provides share key refreshing technique for maintaining
the security of the system, even when some nodes are in control of
attacker. It provides an automated recovery of the security of
individual components, avoiding the use of expensive and
inconvenient manual processes. The technique can be used with
threshold cryptography, by providing periodic refreshments of
the sensitive data held by the servers. This way, the proactive
approach guarantees uninterrupted security as long as not too
many servers are broken into at the same time. In this paper a
solution is provided to enhance security among communication
channel. Towards this a share key refreshing technique is
represented in the form of algorithm in which some trusted nodes
share the private key, which is a part of private-public key pair. It
is distributed on some trusted systems according to threshold
cryptography. Now once shares are distributed they must be
refreshed otherwise attacker can easily obtain those shares and
generate the key. Once shares are distributed they must be
refreshed after some period of time. We also present
implementation details for this scheme.

Keywords— Threshold Cryptography, Proactive Security, Attacks,
Secret sharing, Distributed Cryptography, Share Refreshment.

I. INTRODUCTION

Security is an important issue for networks, especially for
those security-sensitive applications. In the entire environment
of security, it is necessary to ensure privacy. Everyone in the
group must be aware of the security goals and to be conscious
in achieving them [1]. As data communication is becoming
more pervasive, complex and the use of digital data becoming
much more widespread, data security has become a wider,
more complex and more important problem. Cryptography can
be an important tool to help in improving security. Since
public key cryptography and threshold cryptography is widely
used now a day for security purpose but still there is a problem
arises regarding the safety of the private key. There is no
secure mechanism still be achieved in order to protect the
private key from the attacker [2]. For this proactive share key
refreshing technique provides a mechanism, in which the
shares are again divided into sub shares and transferred to each
other for updating the old shares. In such a way attacker cannot
easily obtain all the shares at the same time before
refreshment. Proactive security (PC) combines the ideas of
distributed cryptography with the refreshment of secrets. In
this approach, shares are periodically renewed in such a way
that information gained by the attacker in one time periods is
useless for attacking the secret after the shared are refreshed.

These are the core properties of the Proactive Security. It
doesn’t wait until a break-in is detected. Instead, it invokes the
refreshment periodically in order to maintain uninterrupted
security or force detection [3]. This novel approach ensures
secrecy and authenticity of communication, with automated
refresh of the secret keys.
Cryptography offers a set of sophisticated security tools for a
variety of problems, from protecting data secrecy, through
authenticating information and parties, to more complex multi-
party security goals. Yet, the most common attacks on
cryptographic security mechanisms are system attacks. Such
system attacks are done by intruders (hackers, or through
software trapdoors using viruses or Trojan horses), or by
corrupted insiders. Unfortunately, such attacks are very
common and frequently quite easy to perform, especially since
many existing environments and operating systems are
insecure (in particular Windows).
As a result, computer and network security involve a set of
tools to prevent and detect intrusions, and to regain control
over a computer from the attacker. Detection is particularly
important, since once an attack is detected on any one
computer system administrators is alarmed and are likely to
regain control from the attacker- on most or all computers.
Furthermore security measures are likely to be tightened, and
at least some security exposures found and fixed. Therefore,
attackers often do their best to avoid detection, and indeed
often give up control over a computer rather than risk being
detected [3]. During this time when the Internet provides
essential communication between tens of millions of people
and is being increasingly used as a tool for commerce, security
becomes a tremendously important issue to deal with. There
are many aspects to security and many applications, ranging
from secure commerce and payments to private
communication and protecting passwords [4]. One essential
aspect for secure communications is to protect private key
using proactive security from adversary which is the focus of
this paper.

II. KEY SECURITY ISSUES

As our world is growing increasingly dependent on digital
systems, security of these systems is becoming increasingly
critical. In addition to accidental failures, threats of malicious
attacks must be addressed by the security systems of today and
tomorrow. Connectivity of the digital systems has become an
integral part of their functionality. However, connectivity
could also provide malicious attackers with an easy access to
the system, in particular allowing them to mount their attacks

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

290

even from the other side of the globe. Physical isolation is
hardly ever an option in achieving protection, and so most
systems must rely on other mechanisms for their security.
These mechanisms, be they simple passwords authentication or
sophisticated cryptographic tools, generally depend on
maintaining some secrets keys. Thus, security of a system
hinges on the condition that the attackers cannot gain access to
its secret keys. This condition may be difficult to satisfy,
especially since these keys must be actively used by the
system. One might try to make it harder for an adversary to
expose the secret keys. To this end one might utilize special
devices (such as smart-cards), multiple factor mechanisms
(e.g., regular passwords, combined with smart-cards, and
biometric mechanisms), etc. But our experience shows that no
matter how strong is the protection of the secret keys, it is very
likely that a sufficiently motivated adversary will succeed
sooner or later and expose these keys. Thus, an experienced
security systems designer will plan explicitly for the event of
key exposures.

 A.Key Attacks
The problem with keys in general is that there are so many
ways to get at them. Types of attacks on the key are:
1.Wireless Attacks: Most of the things that have been said so
far about protecting keys apply regardless of the type of
security system we are using. They are not specific to wireless.
Wireless, of course, introduces a whole new set of
opportunities for attackers trying to get keys because it is so
easy to access the data streams, even though they may be
encrypted. The problem for the attacker is that the data is
encrypted and he/she needs the keys. Assuming we don't
change the keys, he/she has as much time as he/she wants to
capture sample messages and analyze them.
2. Brute force attacks: The brute force method means that an
attacker tries every possible key until he finds a match. Given
that he knows the ciphertext and protocol, he would start with
a key value of all zeros, decrypt the message, and see whether
it matches the plaintext (or any fragments he has). If he keeps
adding 1 to the key value, in principle, he will sooner or later
hit on the right key because all possible keys will have been
tried. The time taken for a brute force attack depends on the
key size, or more correctly the key entropy. This is one of the
reasons that government export controls tend to be set
according to key length. For example, it used to be that you
could not export any security technology from the United
States with a key length of more than around 40 bits. Because
the 40-bit key is crackable, many security systems use larger
keys. The use of a longer key really renders brute force attacks
completely ineffective, assuming the underlying cryptographic
algorithm has no weaknesses. Let's suppose supercomputers
become faster and we can try a hundred keys in a microsecond.
With a 104-bit key, you would still need (on average)
3,200,000 billion years to find the right key.
3. Dictionary Attacks: Given that we can so easily defeat brute
force attacks by adding a few bits to the key, any attacker with
an IQ in the double digits will look for another approach.
Here's the idea: Instead of trying every possible key, try only
those keys that we think the user is likely to use. For example,

the attacker could assume that the key is made up entirely of
letters and numbers, as is typical for user-chosen passwords.
This reduces key entropy. A 104-bit key is now only as
effective as a 78-bit key because only 6 bits of every byte are
used. However, 78 bits is still uncrackable using brute force so
the attacker must narrow down further. This approach to
reducing the number of keys to test brings us to the idea
behind a dictionary attack. In a dictionary attack, the enemy
uses a huge dictionary, or database, containing all the likely
passwords. This will certainly include every word in the
English language and may contain other languages as well.
4. Algorithmic Attacks: If the enemy cannot mount a brute
force or a dictionary attack, another approach is to try to break
the algorithm that is, to try to find a flaw in the way the
encryption is performed that might expose the key value. It is
difficult to describe these algorithmic attacks generally
because they depend so much on the algorithm and
understanding the weaknesses often requires that we are a
cryptographic expert. However, there is a straightforward
analogy with safe breaking.

 B.Key Security Goals
The goals for a security system design can be formulated as
threefold:
(a) Make key exposures as difficult and as expensive for
adversaries as possible,
(b) if/when the keys are exposed, minimize the damage;
(c) Recover from the exposures.

III. DISTRIBUTED CRYPTOGRAPHY
In general, it is not convenient that the security of a

system relies on the behavior of a single agent. Let us consider,
for instance, the case of a certification authority, a trusted
entity that certifies that a given public key corresponds to a
given user. Clearly, a certification authority that is composed
by several independent servers is more reliable than one that is
formed by a single server.
Distributed cryptography, introduced in 1987, makes it
possible to design cryptographic systems in which some
operations require the collaboration of several users.
Concretely, a distributed cryptosystem is a public key
cryptosystem in which the secret key is shared among a set of
users. Only some qualified subsets of users will be able to
perform the operation related to the secret key (decrypting or
signing). In this way, the security of the system is increased,
because the loss or theft of several shares of the secret key
does not necessarily break the system’s security. Several
distributed cryptosystems have been proposed until now. Most
of them have a threshold structure, that is, the sets of users that
are able to execute the protocol are those having a certain
number of elements. Due to this fact, distributed cryptography
is called also in general threshold cryptography. Distributed
cryptography is currently a very active research field that is
related to many different areas in cryptology. There are several
open problems whose solution would lead to the construction
of more efficient and versatile distributed cryptosystems.
Many of these problems are related to the different

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

291

cryptographic protocols that are used as pieces of a distributed
cryptosystem[3].

IV. THRESHOLD CRYPTOGRAPHY
Threshold cryptography is the technique of distribution of

trust. Threshold Cryptography is based on (n, t) scheme where
n is number of server and threshold t is the number of node
which recovers the original message, whereas it is infeasible
for at most (n-t) servers to recover the original message. In
Threshold Cryptography, private key (k) is distributed to n
number of nodes, assign one share to each server. Each server
is known as a shareholder. Each shareholder generates a partial
signature using own partial private key. Combiner is a node
which verifies the trust of the servers according to the
protocols defined on them. It receives the partial signature
generated by all the servers, while accepting only those partial
signatures generated by trustworthy servers. With t correct
partial signatures, the combiner is able to compute the
signature for the certificate. However, compromised servers
cannot generate correctly signed certificate by themselves,
because they can generate at most (n-t) partial signatures. A
combiner can verify the validity of a computed signature. In
case verification fails, the combiner tries another set of partial
signatures [11].

A Problems with Threshold Crptography
 When we use public key cryptography technique, once the
keys are distributed then there is no mechanism to keep them
secure against attacks. So if once attackers manage to attack on
the system then he can easily get the private key. But now we
have so many technologies like threshold cryptography which
uses the distributed key method where key is not kept on a
single system but one has to divide the private key into sub
parts and then distribute trust/private key share (one from key
pair) among trusted nodes. But still they face a problem that
once private key shares are distributed then they cannot be
refreshed because there is no previous mechanism to do this.
Because of this the probability of compromising trusted nodes
and getting the shares of the key increases, which in turn can
help the attacker to get the whole private key of his need.

In threshold cryptography the private key is divided using
some algorithm like RSA, ELGAMAL etc., and distributed
between the trusted servers. These servers do not have the
whole private key, but the part of the key. So it is difficult for
the attacker to obtain the key. But the problem arises when the
attacker is able to gain all the t shares from (n, t) threshold
scheme by attacking on all the trusted nodes. This work is
moved around the solution of this problem[12].

B Proposed Approach
 The threshold cryptography gives a way to convey a shared
key to a node without using any key infrastructure also is very
suitable for a secret sharing in network. However, given t or
more shares in an (n, t) threshold cryptography scheme the
secret S can be found. Without the share refresh and with
finite span of time it is not very hard for malicious nodes to
compromise at least t share holder nodes and finally obtain the
secret key. To make each share refresh without disclosure of

any share or a secret key itself. Proactive secret sharing can be
employed. It allows refreshing all shares by generating a new
set of shares for the same secret key from the old shares
without reconstructing the secret key. In the proposed work the
same approach has been implemented.

V. PROACTIVE SECURITY
Proactive security is a mechanism for protecting against

such long-term attacks. It combines the approach calling for
distribution of trust with the one of periodic refreshment:

 Proactive = Distributed + Refresh.

 That is, first distribute the cryptographic capabilities
among several servers. Next, have the servers periodically
engage in a refreshment protocol. This protocol will allow
servers to automatically recover from possible, undetected
break-ins, and in particular will provide the servers with new
shares of the sensitive data while keeping the sensitive data
unmodified [3]. Proactive security shows how to maintain the
overall security of a system even under such conditions. In
particular it provides automated recovery of the security of
individual components, avoiding the use of expensive and
inconvenient manual processes. The technique combines two
well-known approaches to enhance the security of the system:
distributed (or threshold) cryptograph, which ensures security
as long as a threshold (say half) of the servers are not
corrupted; and periodic refresh (or update) of the sensitive data
(e.g. keys) held by the servers. This way, the proactive
approach guarantees uninterrupted security as long as not too
many servers are broken into at the same time. Furthermore, it
does not require identification when a system is broken into, or
after the attacker loses control; instead, the system proactively
invokes recovery procedures every so often, hoping to restore
security to components over which the attacker lost control[8].
The main new contributions (assumptions) are:

 A secure initialization mechanism, with reasonable,
practical requirements from the computer and
operating system. Specifically, all we require is a
secure boot process (which is a good idea anyway,
against viruses - and easily done with signed code);
and a per-machine secret-private key pair, with the
public key protected from modification (e.g. in ROM
or write-once EEROM), and the secret key in erasable
memory (e.g. disk). Previous results required storage
of parameters specific to the particular application
(such as the group’s public key) in secure storage,
which is not practical.

 A set of application program interfaces (APIs) that
allow the use of the toolkit to improve security,
specifically provide security in spite of break-ins into
computers, of existing applications, as well as the
development of new applications which are proactive
secure.

The security of any proactive solution relies heavily upon its
correct architecture and integration with existing, non-
proactive, operating system. The design of system, which does

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

292

not view the proactive model as series of protocols but, rather,
as a security enhancement of the operating system which
transforms it into a proactively secured system via the
appropriate use of proactive protocols, has not been defined
nor implemented in the past. We show that it is possible to
transform general applications which are required to remain
secure for long periods of time to operate in a proactive
environment, namely proactivizing applications [14].

To this end, we define architecture for a proactive
operating environment which serves as a platform on which
standard applications can be proactivized. This operating
environment consists of a network of servers which are set up
once, which we call the proactive network.

Each server is instantiated at boot time by the operating
system and is checked periodically, also by the operating
system. Servers can recover data (both public and private data)
from other servers in the proactive network, if such data is
corrupted or lost. Once the proactive network is set up, any
application can run on the top of the network and request
proactive services by the means of API.

VI. SHARE REFRESHMENT

A. Share Refreshment methodology
Proactive schemes are proposed as a countermeasure to

mobile adversaries. A proactive threshold cryptography
scheme uses share refreshing, which enables servers to
compute new shares from old ones in collaboration without
disclosing the service private key to any server. The new
shares constitute a new (n, t + 1) sharing of the service private
key. After refreshing, servers remove the old shares and use
the new ones to generate partial signatures. Because the new
shares are independent of the old ones, the adversary cannot
combine old shares with new shares to recover the private key
of the service[7].Thus, the adversary is challenged to
compromise t + 1 servers between periodic refreshing. Share
refreshing relies on the following homomorphic property. If
(s1 1, s12, . . . , s1n) is an (n, t + 1) sharing of k1 and (s21, s22,
. . . , s2n) is an (n, t + 1) sharing of k2, then (s11 + s21, s12 +
s22, . . . , s1n + s2n)v is an (n, t + 1) sharing of k1 + k2. If k2 is
0, then we get a new (n, t + 1) sharing of k1.

Given n servers. Let (s1, s2, . . . , sn) be an (n, t + 1)
sharing of the private key k of the service, with server i having
si. Assuming all servers are correct, share refreshing proceeds
as follows: first, each server randomly generates (si1, si2, . . . ,
sin), an (n, t+1) sharing of 0. We call these newly generated sij
’s subshares. Then, every subshare sij is distributed to server j
through a secure link. When server j gets the subshares s1j , s2j
, . . ., snj, it can compute a new share from these subshares and
its old share (s0j = sj + _n i=1sij). Share refreshing must
tolerate missing subshares and erroneous subshares from
compromised servers. A compromised server may not send
any subshares.However, as long as correct servers agree on the
set of subshares to use, they can generate new shares using
only subshares generated from t + 1 servers. For servers to
detect incorrect subshares, we use verifiable secret sharing
schemes. A variation of share refreshing also allows the key
management service to change its configuration from (n, t+1)
to (n0, t0 +1). This way, the key management service can

adapt itself, on the fly, to changes in the network: if a
compromised server is detected, the service should exclude the
compromised server and refresh the exposed share; if a server
is no longer available or if a new server is added, the service
should change its configuration accordingly. The essence of
the proposed solution is again share refreshing. The only
difference is that now the original set of servers generate and
distribute subshares based on the new configuration of the
service: for a set of t + 1 of the n old servers, each server i in
this set computes an (n0, t0 + 1) sharing (si1, si2, . . . , sin0) of
its share si and distribute subshares sij secretly to the jth server
of the n0 new servers. Each new server can then compute the
new share from these subshares. These new shares will
constitute an (n0, t0 + 1) sharing of the same service private
key. More generically we can say that refreshments of the
shares can be performed as follows:Each server i chooses a
random t-degree polynomial fi(X) such that fi(0)=0. Server i
then sends to server j the value sij=fi(j) mod q. still Server j
then computes its new refreshed share s’j as follows: s’j = sj +
s1j + ... + snj mod q and erases its old share. The new shares
s’i lie on the polynomial f’(X) = f(X) + f1(X) + ... + fn(X)
which is of degree t and whose free term is still s so the new
shares define the same secret. Recovery of the share sr=f(r)
mod q of server r is also possible as follows [16]. Each server i
chooses a random t degree polynomial gi(X) such that gi(r) =0
(by choosing the free coefficient of gi(X) to satisfy this
condition). Server i then sends to server j the value gij=gi (j)
mod q. Server j then computes its new share g’j : g’j = g1j + ...
+ gnj mod p. The new shares g’i lie on the polynomial g’(X) =
g1(X) + ... + gn(X) which is still of degree t and satisfies g’(r)
= 0. Now, each server i sends to server r the value si+g’i mod q
= f(i)+g’i mod q. Server r interpolates these values to construct
the polynomial f(X) + g’(X) from which it derives f(r)+g’(r)
mod q and this is exactly sr=f(r) mod q, its lost share[2].

C.Share Refreshment Algorithm
Key Generation:
1. Randomly choose 2 prime numbers p and q
Compute a(n) = (p-1) * (q-1) (i)

Detemine server’s private key (d) as

d = e-1 mod a(n) (ii)

Where e is server’s public key
 2. Determine the threshold (t) as

 t>=n\2 (iii)

So that t < n and n should be greater than or equal to 2.
Where n is number of trusted nodes
Evaluate the Shares (Key distribution):
3. Share generation is based on Shamir’s scheme
Secret is a value S in the set of integers [0……….p-1]
Where p is prime number.
 Server (who is sharing the secret) generates t random numbers
(a1… at) and put these values into given the polynomial.

 f (X) = (S + a1X +…….+ atX
t) (iv)

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

293

4. If f(X) is calculated for different nodes i.e. node 1, node 2,
node 3 Where X = 1, 2, 3………respectively.
Each node receives own share.
Share Refreshment:
Each share holder randomly generates own sub-shares (e.g.
(si1, si2… s in) on node i), and each subshare is mutually
exchanged to refresh own share. Explained as below:
5. Let (s1, s2, . . . , sn) be an (n, t) sharing of the secret key S of
the service, with node i having si.
6. Node i (i Є {1 . . . n}) randomly generates si’s subshares (si1,
si2, . . . , sin) for an (n,t) sharing of 0.
7. Every sub-share sij (j Є {1 . . . n}) is distributed to node j
through secure link.
8. When node j gets the sub-shares (s1j, s2j. . . snj), it computes a
new share from these subshares and its old share with an
equation:
 s΄j = sj + Σn

i=1s ij (v)

9. Now each share (s΄1, s΄2, ……. s΄n) is an (n, t) sharing of
the secret key S, because

Σn
j=1 s ij = 0 (vi)

After each proactive secret sharing, all nodes will change
(refreshed), so that old shares become useless. In such case,
since it is impossible to obtain new shares from old share, a
malicious node must collect at least shares before the
refreshment of share which makes his job difficult.

VII. IMPLEMENTAION DETAILS
The Proactive Security software has been prototyped in Java
1.6.

A. Architectural Flow
The project consists of various modules. At the very first step
it is necessary to distribute the trust or the secret key to the
trusted nodes or machines using (n,t+1) threshold
cryptography. Suppose we have N trusted machines then there
should be n shares of the key. In the figure5.1, it is shown that
key is distributed among nodes using (n,t+1) threshold
cryptography. These shares are distributed among trusted
nodes (machines), which are the parts of the private key whose
public key is distributed among all nodes. We are assuming
that keys are already distributed among trusted nodes. After
this my work has been started, in the next step, we have to
generate a mechanism by which shares can be divided into
subshares. Now all nodes share their subshares between
themselves. They send their subshares through a secure
communication channel, which can be obtained by using some
cryptographic algorithm. By using this subshare mechanism,
the shares are divided into subshares. Because of this we can
refresh the shares of the nodes. And now if attacker wants to
achieve all parts of the secret then he should have to attack on
each and every node but at the same time the share refreshing
mechanism works and refreshes the shares. Now attacker
cannot achieve the whole shares because old shares are
renewed before he got all shares. In this way this mechanism
provides an efficient security. If any node becomes
compromised by the attacker then that node can also be

recovered. The compromised node can be detected by its
behavior. So in this way we can obtain a more secure
communication channel and it can be use for a long term.

B. Implementation Issues
The proactive environment architecture and its algorithms
constitute quite a complex system to implement and test. As
such, the Java language was a natural choice for
implementation since it provides a fast and simple prototyping
environment. Moreover, its portability across platforms was an
important feature, since different nodes in the proactive
network may have to run the toolkit on entirely different
platforms (for example, our demo runs on a network of five
nodes, which are Windows based). Yet, this choice of
programming language had a number of implications.
1. Erasing information from memory, which is an absolutely
necessity for the correct implementation of secrets refresh, is
an issue in all environments (due to virtual memory) and, in
particular, in a garbage collected environment like Java, since
garbage collectors typically copy memory as part of the
collection process.
2. The code for a Java program includes the code for the JVM
(Java Virtual Machine), as well as the byte-code of all classes
loaded (dynamically) by the machine in the course of its
execution. Therefore, satisfying the code-validation
assumption for Java programs may require assistance from the
JVM, possibly by using mechanisms like signed classes or by
writing a customized class loader.
3. We were able to use some of the more advanced features of
Java to simplify both the protocols and communication. All
protocols and messages are implemented as subclasses of an
abstract superclass.
In this way all protocols are treated in a uniform way, which
simplifies both the dispatch of messages to protocols and the
addition of new protocols. In addition, we didn’t have to define
‘protocol messages’ in a strict, well structured, way and parse
them. Instead, all messages are sent as serialization of some
object.

C. API Implementation
Using the Java language enabled us to implement the API
between the server and its clients in a convenient and simple
way. To write such an application firstly we have to write a
class name as StartNodeServer for which we have to import
various packages of java like:

1) import java.math.BigInteger;
2) import java.net.*;
3) import java.util.Random;
4) import java.io.*;

ne more public class is created named ApplicationConstants in
which all the port numbers are defined, for establishing
communication between servers. This a common class called
in all the other classes. Three more servers (trusted nodes) are
defined, which takes part in share refreshing. These servers are
those machines who shares the parts of the private key named
as Node1Server, Node2Server and Node3Server.

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

294

For all these three machines we have three classes named
Node1Server, Node2Server and Node3Server. The packages
which are importing here as follows:
1) import java.io.DataInputStream;
2) import java.io.DataOutputStream;
3) import java.io.IOException;
4) import java.io.InputStream;
5) import java.io.OutputStream;
6) import java.math.BigInteger;
7) import java.net.ServerSocket;
8) import java.net.Socket;
9) import java.net.SocketTimeoutException;

To write a proactive application the client must write a class
which is a subclass of the class ApplicationConstatnts. This
superclass provides its subclass with methods to request
services from the server, send messages to clients running on
the other machines, and load new classes to the server.
In addition, this class defines abstract methods which the
subclass must implement and which the server uses to notify
the client about the status of request and about incoming
messages from other clients.

ACKNOWLEDGMENT
We would like to thank the all faculty members of the

institute, who helped us lot in calculating the facts and figures
related to our paper and the anonymous reviewers who
provided helpful feedback on my manuscript.

REFERENCES
[1] G. R. Blakley, “Safeguarding cryptographic keys”. In Proc. AFIPS 1979
National Computer Conference, pp. 313-317. AFIPS, 1979.
[2] D. Boneh and M. Franklin. “Efficient generation of shared RSA keys”. In
Proc. Crypto ‘97, pp. 425-539.

[3] R. Canetti, R. Gennaro, A. Herzberg and D. Naor, “Proactive Security:
Long-term protection against break-ins”. CryptoBytes: the technical newsletter
of RSA Labs, Vol. 3, number 1 - Spring, 1997.
[4] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. “Optimal resilience
proactive public-key cryptosystems”. In Proc. 38th Annual Symp. on
Foundations of Computer Science. IEEE, 1997.
[5] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Proactive RSA. In
Proc. of Crypto '97. 12. P. Gemmell. “An introduction to threshold
cryptography”. In Cryptobytes, Winter 97, pp. 7-12, 1997.
[6] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, “Robust threshold DSS
signature”. In Ueli Maurer, editor, Advances in Cryptology - Eurocrypt '96,
pp. 354-371, 1996. Springer-Verlag Lecture Notes in Computer Science No.
1070.
[7].Stanislaw Jarecki and Nitesh Saxena. Further simplifications in proactive
RSA signature schemes. In LNCS, volume 3378, pages 510–528, 2005.
TCC’05.
[8]. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk and M. Yung.
“Proactive public key and signature systems”, ACM Security '97.
[9]. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing, or: How to cope with perpetual leakage”. In D. Coopersmith, editor,
Advances in Cryptology – Crypto '95, pp. 339-352, 1995. Lecture Notes in
Computer Science No. 963.
[10]. T. Rabin, “A simplified approach to threshold and proactive RSA”, Proc.
of Crypto ‘98.
[11]. A. Shamir. How to Share a Secret. Communications of the ACM,
22:612-613, 1979.
[12].Timo Warns. “On the Coverage of Proactive Security: An Addition to the
Taxonomy of Faults” Lecture Notes in Informatics, 67 . Gesellschaft für
Informatik e.V., pp. 405-409. ISBN 3-88579-396-2,2005.
[13]. S. Jarecki, N. Saxena, and J. H. Yi. An Attack on the Proactive RSA
Signature Scheme in the URSA Ad Hoc Network Access Control Protocol. In
ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN), pages 1–
9, October 2004.
[14]. B. Barak, A. Herzberg, D. Naor, and E. Shai. The Proactive Security
Toolkit and Applications. In Proc. 6th ACM Conference on Computer and
Communications Security (CCS). ACM, 1999.
[15]. M. Jakobsson, S. Jarecki, H. Krawczyk, and Moti Yung. “proactive RSA
for constant-size thresholds”. Unpublished manuscript, 1995.
[16]. http://www.research.sun.com/projects/crypto.
[17]. http://www.rsa.com/rsalabs/.
[18]. L. Ertaul and N. Chavan, “Security of Ad Hoc Networks and Threshold
Cryptography”, in MOBIWAC 2005.

Rajkumari Retoliya et al IJCSET | July 2011 | Vol 1, Issue 6,290-295

295

