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Abstract – The fast pace of growth of the semiconductor industry 

has been both a blessing and as well as a biggest challenge to its 

future. The increase in the number of transistors that can be 

packed in a single wafer is expected to come to a standstill by 

2020. Therefore large number of researches is going on to exploit 

science in such a way so that we bring out newer and efficient 

designs with the existing technology. The need for optimization of 

designs in terms of speed, power or area is the most looked upon 

field. We present in this paper few techniques which when used 

in combination has been already proved to give area and speed 

optimized designs. The techniques presented are 1) Compressor 

tree using Carry save adders and 2) Common Subexpression 

Elimination. The large scattering of logic operations over the 

arithmetic operations is the main target for applying Compressor 

tree after a series of Rewriting and Sorting rules. Common 

Subexpression Elimination involves identification of redundant 

terms in expressions and careful restructuring of resources. So 

far the above Optimization algorithms have been implemented 

for FIR filters and few benchmarks. We have presented a 

systematic analysis after comparison of the above methods with 

conventional methods. FIR filters with different orders were 

taken and Common Subexpression Elimination method was 

implemented on them. The efficiency of the method is brought 

out. Appropriate benchmark circuits were chosen for 

implementing Compressor tree technique. The comparison of 

these methods with their conventional mechanisms is presented.  

Keywords – Carry save adders, compressor trees, Three-greedy 

technique, Common Subexpression Elimination, Horizontal 

Common Subexpression Elimination, Vertical Common 

Subexpression Elimination. 

I. INTRODUCTION 

There are tremendous innovations in the field of 

computers each day owing to the increased demands. 

Technology is advancing in such a rapid phase that we always 

want better and better devices for our applications. The 

computers used in the olden times are replaced now by more 

compact and efficient devices. Therefore the need of the hour 

is to choose optimized designs which provide number of 

applications within the same or even lesser area. We are also 

looking out for the speed of the operations in this fast world. 

All these demands have paved way for research in the fields 

of optimization of datapath circuits. Most of these datapath 

processors involve the use of arithmetic circuits for its 

operation. The target for area reduction usually is the 

multiplier. There are many optimization algorithms in the 

recent years which concentrate on the area reduction of 

multipliers. This paper discusses few of the many 

optimization algorithms targeted for processors, compares 

them and arrives at the best possible combination to yield 

optimized results.  

There is always a scattering of logic operations over 

arithmetic nodes making the data flow complex. There are 

many sorting techniques available which sort the dataflow 

graphs such that the logic operations are separated from the 

arithmetic operations. These arithmetic nodes are combined in 

a systematic way to obtain compact dataflow graphs without 

any loss in its original functionality. The compressor trees are 

used to combine the arithmetic nodes which have the potential 

to reduce the number of arithmetic / logic nodes needed. The 

most commonly used compressor tree is the Wallace-like 

compressor tree. The next optimization algorithm is the 

Common Subexpression Elimination. It leads to numerical 

transformation of constant multiplication leading to efficient 

hardware utilization and increased speed.  

The optimization algorithms discussed provide the 

following merits compared to the conventional methods: 

1) Decrease in Critical path delay 

2) Reduction in the overall area 

3) Increased computation speed 

4) Efficient reutilization of resources 

The tools used for this purpose are MATLAB for 

Common Subexpression Elimination and Turbo C for 

Compressor trees. A set of various orders of FIR filter are 

used for implementing the Common Subexpression 

Elimination method using MATLAB. This is then followed by 

application of Compressor trees after taking the data flow 

graph through various steps of sorting. This is coded using C 

language. The resulting data flow graph is synthesized using 

High level synthesis tool – SPARK and area report is obtained 

using Quartus II. The benchmark circuits used for Compressor 

tree technique are Elliptic Wave Filter (EWF), Wave Digital 

Filter (WDF) and MPEG Motion Vector (MPEG-MV). Future 

work comprises of applying both the techniques in a 

benchmark data flow graph and obtained area optimized 

designs. 

Section II deals with Common Subexpression Elimination 

and then a discussion on the Compressor tree technique in 

section III. An implementation of Compressor tree and 

Common Subexpression Elimination along with its 

comparison with conventional methods is given in section IV. 

Results and discussion are also presented here. 
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II. COMMON SUBEXPRESSION ELIMINATION 

Strength reduction at the algorithm level reduces the 

number of additions and multiplications in arithmetic circuits. 

One such numerical technique is called Sub expression 

elimination [1]. This technique improves speed, power and 

area of the circuit greatly. This strength reduction reduces the 

total capacitance and therefore reduces the power 

consumption. Sub expression elimination method is used over 

expressions which have a set of common multiplicands. It 

identifies recursive occurrences of identical bit patterns that 

are present in the coefficients using Iterative Matching 

Algorithm [2]. It reduces the number of redundant 

multiplications and thus maximizes the use of a common 

expression multiple times to obtain the desired design. Here 

the number of shifts and additions required for multiplication 

is effectively minimized.  

The Iterative matching algorithm used in implementing 

CSE uses the following steps: 

 

 Each constant in the set is expressed in binary format 

or Canonic Signed Digit format. 

 The number of bitwise matches between each pairs 

of the constants in the set is determined. Only non-

zero matches are considered because only they have 

the potential to increase the number of 

adders/shifters. 

 The best match is chosen. 

 The redundancy from the best match is eliminated. 

The remainders and the redundancy are returned to 

the set of coefficients. 

 The number of bitwise matches continues to be 

determined until no more improvement is achieved.  

The applications of Common Subexpression Elimination 

are as follows: 

A. Common Subexpression Elimination in Linear problems 

As already discussed before, the Subexpression 

elimination can be applied to constant multiplications. 

Therefore we can extend its use to linear transformation also. 

The multiplicands are expressed in binary format and then the 

iterative matching algorithm is applied to extract the common 

subexpressions. 

While considering Linear Transformations, the sub 

expression elimination problem consists of three basic steps:  

 The number of shifts and adds required to compute 

the product, tij xj are minimized using Iterative 

matching algorithm.  

 Unique products are formed using the sub 

expressions determined in the previous step. 

 The additions are shared among the various yi’s thus 

reducing the number of individual hardware and 

process time required for computing the additions.  
 

B. Common Subexpression Elimination in polynomial 

evaluation: 

In a similar way, Sub expression elimination can be 

applied to polynomial evaluation also. This technique is best 

suited to reduce the computational complexity [3]. 

 For e.g., considering the polynomial shown below, 

a
7
 + a

4
 + a

2
 + a    (1) 

A conventional realization of the above expression would 

require 10 multiplications. However on careful examination 

we can notice that the number of multiplications required can 

be significantly reduced. For eg. a
7 

as a
4
 * a

2
 * a

1
. Therefore 

after applying sub expression evaluation, the polynomial 

evaluation problem effectively reduces as: 

a
2
 * (a

4
 * a) + a

4
 + a

2
 + a   (2) 

The terms a
2
, a

4 
and a

8
 each require only one multiplication: 

a
2
 = a * a,    a

4
 = a

2
 * a

2
   (3) 

Thus we see that on exploiting the redundancy which is not 

conceptually very difficult we arrive at a much simpler 

polynomial evaluation problem. 

C. Common Subexpression Elimination in filters: 

The idea of Common Subexpression Elimination is made 

use of in FIR filters to reduce the hardware complexity of the 

filter implementation [4], [5]. In order to realize the sub 

expression elimination transformation for an N-tap filter given 

by the following expression, 

y (n) = h0x (n) + h1x (n-1) + . . . + hN-1x (n-N+1) (4)

     

must be realized using its transposed direct form structure. 

This type of structure is also referred to as a broadcast filter 

structure. With this structure, one variable is multiplied to 

multiple constant coefficients. Sub expression elimination can 

then be applied. To systematically obtain the sub expression 

elimination, a filter operation is represented in a matrix form. 

The rows are indexed by delay i and the columns by shift j. 

The row and column indexing starts at 0. The entries in the 

table are 0 or 1 if two’s complement representation is used 

(except the sign bit) or they are from the digit set {0, 1, -1} if 

CSD is used.  

An improvement over Common Subexpression 

Elimination is Binary Common Subexpression Elimination. 

This technique uses binary representation [0 1] instead of the 

Canonic signed digit representation [-1 0 1] in Common 

Subexpression Elimination [6]. The other variants of Common 

Subexpression Elimination are Vertical Common 

Subexpression Elimination (VCSE) and Horizontal Common 

Subexpression Elimination (HCSE). The VCSE technique 

identifies subexpressions between different coefficients 
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whereas the HCSE identifies subexpressions within the same 

coefficient. An example of VCSE and HCSE is shown in Fig. 

3 and 4 respectively. 

D. Illustration of CSE in Digital Filters: 

E.g. y(n)= 1.0001`00000*x(n) + 0.1`01`010010*x(n-1) + 

0.000100001`*x(n-2)  

 
Fig. 1 Common Subexpression Elimination in Digital Filters 

 

Subexpression: x2 = x1 – x1[-1] >> 1 

y = x2 – (x2 > > 4) – (x2[-1] >> 3) + (x2[-1] >> 8) 

E.g. y(n) = 1.000ĺ00010 * x(n) + 1.000ĺ00010 * x(n-1) + 

0.0001000ĺ0 * x(n-2) 

VCSE: 

1    -1    1  

1    -1    1  

    1    -1  

Fig. 2 Vertical Common Subexpression Elimination  

Subexpression: x2 = x1 + x1[-1] 

y(n) = x2 – (x2 >> 4) + (x2 >> 8) + (x1[-2] >> 4) – (x1[-2] >> 

8) 

HCSE: 

1    -1    1  

1    -1    1  

    1    -1  

Fig. 3 Horizontal Common Subexpression Elimination 

Subexpression: x2 = x1 – (x1 >> 4) 

y(n) = x2 + x2[-1] + (x2[-2] >> 4) + (x1 >> 8) + (x1[-1] >> 8) 

The CSE technique is followed by the Compressor tree 

method. A large number of data flow transformations are 

applied before applying compressor trees. This is because 

better efficiency is obtained in terms of area after such 

transformations. 

III. COMPRESSOR TREES 

The idea of parallel addition and multiplication was a 

major breakthrough from the conventional approach. It helped 

to save a lot of time though there was so save in the resources 

utilized. The processor was never idle in such a situation. 

Fig. 4(a) shows a conventional approach for adding 18 

numbers. It is noted that it takes 16 time steps to obtain the 

result. In the modified tree height reduction approach shown 

in Fig. 4(b), it takes only 7 time steps to finish the same 

operation. This method uses parallel addition using carry save 

adders to compute and produce faster results. 

It is evident from Fig. 4(b) that the parallel addition 

method holds well as long as all the inputs arrive at more or 

less equal times. Therefore such an architecture would be best 

suited if all its inputs were primary inputs. However if we 

intend using such an architecture in the middle or towards the 

end of a data flow graph, then the input arrival time poses a 

major threat to the usage of such a technique. In the worst 

case, it can even produce the same results as conventional 

approach (Fig. 4(a)). Therefore knowledge of input arrival 

times is very important for working out a solution towards the 

same.  

 

 
 

Fig. 4(a) Conventional approach to add 18 numbers 
 

 

Fig. 4(b) Parallel architecture for adding 18 numbers 
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A. Three-greedy technique: 

The Three greedy technique is a heuristic to reduce the 

vertical slice [7]. The steps are shown in Fig. 5. A set, T is 

defined for each vertical slice of the graph. It contains the 

arrival delay of all input bits initially. In each step, three 

smallest values are chosen from T and a full adder is used to 

calculate the sum and carry from the corresponding inputs. 

Then the three values are removed from the set T. The sum of 

the bits is now added to the set while the carry is added to the 

set T of the next vertical slice. The process is repeated until 

the set T contains the final three elements in it. These three 

inputs are again fed to a full adder which calculates the final 

sum and carry. The assumption under this process is that the 

difference between the arrival times of the input signals is not 

extremely large and the use of compressor trees is beneficial. 

The three greedy techniques essentially checks if any addition 

operation can be performed before the next input arrives. This 

way we can use the hardware efficiently.  

The processor design requires a large scatter of logic 

operations over the arithmetic operations. It is important to 

sort these nodes in such a manner that they are more 

understandable. It then becomes easy to apply optimization 

techniques to this sorted dataflow graph. Compressor trees are 

then applied to suitable arithmetic nodes after careful analysis. 

There are two points to be observed before applying 

compressor trees. The first is that the function of the design 

before and after optimization should remain the same. The 

second is that the application of compressor trees should 

provide some advantage compared to the traditional design. 

 

Fig. 5 Three Greedy technique 

A compressor tree is shown in Fig. 6. It is basically a 

circuit which takes more than 3 inputs and produces 2 outputs, 

sum and carry [8].  

 

Fig. 6 General form of a Compressor tree 

Though the compressor trees efficiently reduce the area 

when compared to the traditional designs, there arises a 

problem when there is a drastic difference in the arrival times 

between its various inputs. Therefore they make use of Three 

greedy technique for overcoming this problem.  

The steps involved in the application of compressor trees 

are briefed in the flowchart shown in Fig. 7 ([9], [10]). 

 

Fig. 7 Steps involved in the application of compressor trees 

B. Steps involved in Compressor tree application: 

The steps involved in the Compressor tree technique are 

summarized below. The scattered natures of the logic and 

arithmetic nodes are the main target.  

1) Rewriting rules: The first step under this consists of 

rewriting all the arithmetic operations in terms of additions so 

that whole of the arithmetic circuit consists of only adders. 

The table 1 gives a list of rewriting rules. The first operation 

computes the negative by an integer by finding the 2’s 

complement of the integer. The second operation generates 

the difference of two integers by calculating the sum of one of 

the integers and the 2’s complement of the next integer. The 

third rule implements a parallel multiplier. PP ( ) generates a 

set a partial products and sum ( ) represents addition of the 

partial products which will be implemented using the 

compressor trees. The fourth operation calculates the relation 

between two operands by finding the difference between the 

two and then checking the sign bit.  

After this step the dataflow graph is rearranged in such a 

way that multi-input adders are incorporated as much as 

possible. Then we replace a multi-input adder with a 
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compressor tree followed by a single carry-propagate final 

adder.  
TABLE I 

REWRITING RULES 

From To 

-X XC + 1 

X – Y X + YC + 1 

X * Y SUM (PP( X,Y )) 

X (relation) Y FREL (SIGN (X – Y)) 

2) Sorting rules: This is an important step before 

applying compressor trees. Sorting of a dataflow graph is done 

to improve the effectiveness of the carry save representation. 

After rewriting the dataflow graph according to Table 1, the 

resulting directed acyclic dataflow graph is represented as G 

(V, E). Here nodes V’s represent primitive operations and 

edges E’s represent data dependences. The function Ord (.) 

returns the position of a node in the ordering. The nodes can 

be in one of the two classes: Arithmetic (A) where all the 

nodes consist of only adders as they have already been 

rewritten using Table 1. The function class (.) returns the class 

of a node. There is an important fact to note. A sorted graph is 

sufficient though not absolutely necessary to be able to 

produce an optimal implementation with the use of 

compressor trees. Table 2 summarizes transformation rules for 

advancing class L operations over class A operations.  

The table gives a clear idea that in only some cases 

swapping of nodes is possible. The last sorting rule i.e. 

advancing a Partial Product (PP) node over addition is based 

on the distributive property of multiplication over addition but 

is considerably more complex than the other sorting rules. It is 

to be noted that unlike the other sorting rules, this rule is 

sometimes not quite practical as it imposes a major cost in 

terms of hardware. Therefore a careful analysis has to be 

performed before applying this rule for it to be beneficial. 

After applying the last sorting rule, for any PP node, there 

exists an addition node such that from all outputs of the PP 

node, there are identical paths of logic nodes to the addition 

node. 

TABLE II 

POSSIBILITIES FOR ADVANCING CLASS L OPERATIONS OVER 

CLASS A OPERATIONS 
 

Operations 
Can be advanced 

over addition 

Bitwise NOT Yes 

Multiplication Yes 

Partial Product 

generator 
Yes 

Selector Yes 

3) Application of Compressor tree: After applying 

the rewriting rules, all the arithmetic nodes have been 

transformed to include only adders. After advancing the 

appropriate Logic nodes over the addition nodes, we can get a 

cluster of addition nodes. We can then apply multi-input 

adders for all independent nodes. This method reduces the 

number of adders thereby reducing the hardware utilization of 

the design. By applying the three-greedy technique also, we 

can obtain efficient time utilization. 

 

4) Functionality and Cost check: There are 2 

checks to be satisfied before applying the compressor trees. 

They are the functionality check and the cost check. The 

Functionality check accounts for the fact that the basic 

function of the design should not be compromised due to the 

application of any number of optimization techniques. The 

next check reveals if there is any advantage either in terms of 

area or in terms of speed after applying the compressor trees. 

It is necessary to identify Useful Movable nodes for this 

purpose. These are nodes which produce an advantage when 

moved.  

 

IV. RESULTS AND DISCUSSION 

Appropriate benchmark circuits shown in Table 3 were taken 

and the rewriting and sorting rules were applied to them to 

obtain a sorted Data flow graph with a cluster of addition 

nodes towards the end. These nodes can then be replaced by a 

multi input adder which improves speed and reduces the 

hardware utilization. Some of the benchmark circuits were 

implemented using this technique and results were obtained as 

shown in Table 3. High level synthesis tool – SPRAK is used 

for this purpose. It takes C file as input and generates a VHDL 

output. This HDL file can then be simulated using ModelSim 

and synthesized using Quartus II. Thus the area report is 

obtained which can then be compared with the conventional 

method. 

TABLE III 

COMPARISON BETWEEN ORIGINAL DFG AND SORTED DFG AND 
THE SAVE IN AREA OBTAINED USING HIGH LEVEL SYNTHESIS 

TOOL – SPARK 

Benchmark 

circuit 

No of nodes 

in original 

dfg 

No. Of 

nodes in 

sorted dfg 

Area saving 

(in %) 
EWF 35 29 12.2 

WDF 35 26 15.7 

MPEG-MV 33 23 17.28 

 

A conventional FIR filter whose coefficients have 

been specified in Canonic Signed Digit representation was 

implemented and the number of adders required was noted. 

The same filter was implemented using Vertical Common 

Subexpression Elimination and Horizontal Common 

Subexpression Elimination techniques using Iterative 

Matching Algorithm and the results were tabulated as shown 

below. Matlab was used to implement the algorithms. 

 

 

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

300



TABLE IV  
COMPARISON CHART ON THE HARDWARE UTILIZATION 

BETWEEN VARIOUS TYPES OF FIR FILTERS USING MATLAB 

 

Filter 

order 
Coefficients No. of Adders utilized 

  Conventional VCSE HCSE 

3 

C0=1.000Ī00010 

C1=1.000Ī00010 

C2=0.00010000Ī 

7 5 5 

4 

C0=Ī010Ī00010 

C1=0.Ī01000000 

C2=0.010Ī00010 

C3=1.000010Ī00 

11 9 8 

5 

C0=Ī010Ī00010 

C1=0.Ī01000000 

C2=0.010Ī00010 

C3=1.000010Ī00 

C4=0.00010000Ī 

13 11 10 

Common Subexpression Elimination technique was 

implemented for various FIR filter orders in a high level 

synthesis tool – SPARK using C language. It was synthesized 

using Quartus II, implemented using FPGA device – Cyclone 

III. The following results were obtained. 

TABLE V 

LOGIC OPERATOR AND REGISTER UTILIZATION OF FIR FILTERS 
USING HIGH LEVEL SYNTHESIS TOOL – SPARK 

FIR filter 

order 

Logic operators 

used 

Flip flops 

/ latches 

10 120 45 

20 243 91 

28 312 103 

35 401 165 

55 560 217 

 

 
 

 
 

Fig. 8 Hardware requirement of Conventional, VCSE and HCSE type FIR 

filters 

V. CONCLUSION 

The following conclusions were derived after implementing 

Compressor trees and Common Subexpression Elimination 

methods: 

1) Using the compressor tree method, an average of 

about 15% save in area was obtained for 3 

benchmark circuits (Elliptic Wave Filter, Wave 

Digital Filter, MPEG Motion Vector). 

2) The Common Subexpression Elimination method 

was implemented for various FIR filter orders and it 

was concluded that it required atleast 2 adders less 

than that required in the conventional 

implementation. It was also derived that the method 

would yield better results as the order of the filter is 

increased. 

The above Optimization algorithms when used together in 

a single benchmark circuit will provide the advantages of both 

the methods – Decrease in area and reduction in critical path 

delay in case of Compressor trees and increase in reutilization 

of hardware resources through Common Subexpression 

Elimination. The above along with the Distributed Arithmetic 

method integrated together on the benchmarks and the FIR 

filters is envisaged as the future work. 
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