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Abstract: Clustering is the process of partitioning the data set 
into subsets called clusters, so that the data in each subset share 
some properties in common. Clustering is an important tool to 
explore the hidden structures of modern large Databases. 
Because of the huge variety of the problems and data 
distributions, different classical clustering algorithms, such as 
hierarchical, partitional, density-based and model-based 
clustering approaches, have been developed and no techniques 
are completely satisfactory for all the cases. Sufficient empirical 
evidences have shown that a New Minimum Spanning Tree 
(NMST) representation is quite invariant to the detailed 
geometric changes in cluster boundaries. Therefore, the shape 
of a cluster has little impact on the performance of MST - based 
clustering algorithms, which allows us to overcome many of the 
problems faced by the classical clustering algorithms. NMST - 
based clustering algorithms also have the ability to detect 
clusters with irregular boundaries and so they are being widely 
used in practice. In these MST - based clustering algorithms, 
search for nearest neighbour is to be done in the construction of 
NMST. This search is the main source of computation and the 
standard solutions take O(N2) time. In our paper, we present a 
fast minimum spanning tree-inspired clustering algorithm. This 
algorithm uses an efficient implementation of the cut and the 
cycle property of the NMST, that can have much better 
performance than O(N2) time. 
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1. INTRODUCTION 

For a set of data points and a distance measure, clustering is 
the process of partitioning the data set into subsets, called 
clusters, so that the data in each subset share some properties 
in common. Usually, the common properties are 
quantitatively evaluated by some measures of the optimality 
such as minimum intracluster distance or maximum 
intercluster distance, etc. Clustering, is an important tool to 
explore the hidden structures of modern large databases, has 
been extensively studied and many algorithms have been 
proposed in the literature. Because of the huge variety of the 
problems and data distributions, different techniques, such as 
hierarchical, partitional, density and model-based 
approaches, have been developed and no techniques are 
completely satisfactory for all the cases. For example, some 
classical algorithms rely on either the idea of grouping the 
data points around some “centres” or the idea of separating 
the data points using some regular geometric curves such as 
hyper planes. As a result, they generally do not work well 
when the boundaries of the clusters are irregular.  
MST is only one of several spanning tree problems that 

arise in practice. There are other spanning tree-based 
clustering algorithms that maximize or minimize the degrees 
of link of the vertices. However, these algorithms are 
computationally expensive. MST-based clustering algorithms 

have been studied for decades. With the coming of 
information explosion, computational efficiency has become 
a major issue for modern large databases which typically 
consist of millions of data items. As random access memory 
is getting cheaper, larger and larger main memories become 
possible to store the whole database for faster system 
response. As a result, very efficient MST-based in-memory 
clustering algorithms are in need. In the past, k-d tree (for 
nearest neighbour search to avoid some distance 
computation) and the Delaunay Triangulation had been 
employed in the construction of MST to reduce the time 
complexity to near O(N log N). Unfortunately, they work 
well only for dimensions no more than 5. Although many 
new index structures for nearest neighbour search in high-
dimensional databases have been proposed recently, their 
applications to the MST problem have not been reported. In 
our paper, we propose a new MST - inspired clustering 
approach that is both computationally efficient and 
competent with the state-of-the-art MST - based clustering 
techniques. Basically, our MST - inspired clustering 
technique tries to identify the relatively small number of 
inconsistent edges and remove them to form clusters before 
the complete MST is constructed. To be as general as 
possible, our algorithm has no specific requirements on the 
dimensionality of the data sets and the format of the distance 
measure, though Euclidean distance is used as the edge 
weight in our experiments.  
 

2. REVIEW OF MINIMUM SPANNING 
TREE ALGORITHM 

In traditional MST problems, a set of n vertices and a set of 
m edges in a connected graph are given. A “generic” 
minimum spanning tree algorithm grows the tree by adding 
one edge at a time. Two popular ways to implement the 
generic algorithm are the Kruskal’s algorithm and the Prim’s 
algorithm. In opposition to the “generic” minimum spanning 
tree algorithms, “Reverse Delete” algorithm starts with the 
full graph and deletes edges in order of non increasing 
weights based on the cycle property as long as it does not 
disconnect the graph. The cost of constructing an MST using 
these classical MST algorithms is O (m log n). 
2.1 MST-BASED CLUSTERING ALGORITHMS 
With an MST being constructed, the next step is to define an 

edge inconsistency measure so as to partition the tree into 
clusters. Like many other clustering algorithms, the number 
of clusters is either given as an input parameter or figured out 
by the algorithms themselves. Under the ideal condition, that 
is, the clusters are well separated and there exist no outliers, 
the inconsistent edges are just the longest edges. However, in 
real-world tasks, outliers often exist, which make the longest 
edges an unreliable indication of cluster separations.  
In these cases, all the edges that satisfy the inconsistency 

measure are removed and the data points in the smallest 
clusters are regarded as outliers. As a result, the definition of 
the inconsistent edges and the development of the 
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terminating condition are two major issues that have to be 
addressed in all MST-based clustering algorithms, even when 
the number of clusters is given as an input parameter. Due to 
the invisibility of the MST representation of a data set of 
dimensionalities beyond 3, many inconsistency measures 
have been suggested in the literature. 
Clustering is the process of partitioning the data into 

subsets, called clusters. Because of huge variety of problems 
different techniques such as hierarchical, density-and model-
based approaches are not satisfactory. The problems faced by 
classical clustering algorithms can be reduced by Minimum 
spanning tree representation up to some extent. A “generic” 
minimum spanning tree algorithm grows the tree by adding 
one edge at a time .Two popular ways to implement the 
generic algorithm are the Kruskal’s algorithm and the Prim’s 
algorithm.  
In the Kruskal’s algorithm, all the edges are sorted into a 

non decreasing order by their weights, and the construction 
of an MST starts with n trees, i.e., every vertex being its own 
tree. Then for each edge to be added in such a non decreasing 
order, check whether its two endpoints belong to the same 
tree. If they do (i.e., a cycle will be created), such an edge 
should be discarded. In the Prim’s algorithm, the construction 
of an MST starts with some root node t and the tree T 
greedily grows from t outward. At each step, among all the 
edges between the nodes in the tree T and those not in the 
tree yet, the node and the edge associated with the smallest 
weight to the tree T are added. 
In opposition to the “generic” minimum spanning tree 

algorithms, “Reverse Delete” algorithm starts with the full 
graph and deletes edges in order of non increasing weights 
based on the cycle property as long as doing so does not 
disconnect the graph. The cost of constructing an MST using 
these classical MST algorithms is O(m log n). More efficient 
algorithms promise close to linear time complexity under 
different assumptions. In an MST-based clustering algorithm, 
the inputs are a set of N data points and a distance measure 
defined upon them. Since every pair of points in the point set 
is associated with an edge, there are N(N – 1)/2 such edges. 
The time complexity of the Kruskal’s algorithm, the Prim’s 
algorithm, and the “Reverse Delete” algorithm adapted for 
this case is O(N2). 
With an MST being constructed, the next step is to define an 

edge inconsistency measure so as to partition the tree into 
clusters. Like many other clustering algorithms, the number 
of clusters is either given as an input parameter or figured out 
by the algorithms themselves. Under the ideal condition, that 
is, the clusters are well separated and there exist no outliers, 
the inconsistent edges are just the longest edges. However, in 
real-world tasks, outliers often exist, which make the longest 
edges an unreliable indication of cluster separations. In these 
cases, all the edges that satisfy the inconsistency measure are 
removed and the data points in the smallest clusters are 
regarded as outliers.  
As a result, the definition of the inconsistent edges and the 

development of the terminating condition are two major 
issues that have to be addressed in all MST-based clustering 
algorithms, even when the number of clusters is given as an 
input parameter. Due to the invisibility of the MST 
representation of a data set of dimensionalities beyond 3, 
many inconsistency measures have been suggested in the 
literature. In Zahn’s original work, the inconsistent edges are 
defined to be those whose weights are significantly larger 

than the average weight of the nearby edges in the tree. The 
performance of this clustering algorithm is affected by the 
size of the nearby neighborhood.  
 

3. DIVISIVE HIERARCHICAL CLUSTERING 

ALGORITHM (DHCA) 
 

Essentially, for a given data set and “K” value, the DHCA 
start with K randomly selected centres, and then assigns each 
data point to its closest centre, creating K partitions. At each 
stage in the iteration, for each of these K partitions, DHCA 
recursively selects K random centres and continues the 
clustering process within each partition to form at most KN 
partitions for the Nth stage[1]. In our implementation, the 
procedure continues until the number of elements in a 
partition is below K+2, at which time, the distance of each 
data item to other data items in that partition can be updated 
with a smaller value by a brute-force nearest neighbour 
search.The Divisive Hierarchical Clustering Algorithm 
partitions the data set into smaller partitions so that the 
number of data items in each partition must be less than the 
maximum partition size i.e., “K+2”. In the first iteration the 
entire data set is stored as the initial partition. After that, at 
each stage all the partitions are stored irrespective of their 
“K+2” condition. 
For a set of s-dimensional data, i.e., each data item is a point 

in the s-dimensional space, there exists a distance between 
every pair of the data items. In this sequential initialization, 
all the pair wise distances are calculated after reading their 
details from the database. The threshold value calculation 
consists of Distance and Index Arrays. The distance array[1] 
is used to record the distance of each data point to some other 
data point in the sequentially stored data set. The index 
array[1] records the index of the data item at the other end of 
the distance in the distance array. The number of partition 
centers at each stage of the DHCA, performance of the 
algorithm with and without a given number of clusters. K 
varies from min to max. For max k, the algorithm produces 
into larger number of distance computations in the DHCA 
processes and the running time increases with k. As K 
increases, the change in running time increases along. For 
minimum value of K, the changes in the running time are 
small because when K is minimum for the construction of 
DHCA a small increase in k, decreases the total number of 
nodes which makes better in  performance than using small 
k. When K gets larger and larger, more distance processes to 
partition center and the increase in processes eventually 
improves. 

 
Fig 1. Random Selection of Centers and nearest 

neighbor assignment in DHCA 
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3.1. Grygorash MST-based clustering techniques 
At almost the same time, Grygorash proposed two MST-

based clustering algorithms, called the Hierarchical 
Euclidean distance - based MST clustering algorithm 
(HEMST) and the Maximum Standard Deviation Reduction 
clustering algorithm (MSDR) respectively. Requiring the 
number of clusters given as an input, their HEMST first 
computes the average and the standard deviation of the edge 
weights in the entire EMST and uses their sum as a threshold. 
Next, edges with a weight larger than the threshold are 
removed, leading to a set of disjoint sub trees. For each 
cluster, a representative is identified as its centroid, resulting 
in a reduced data set.  
An EMST is next constructed on these representatives and 

the same tree partitioning procedure is followed until the 
number of clusters is equal to the preset number of clusters. 
With no input about the number of clusters, their MSDR is 
actually a recursive two partition optimization problem. In 
each step, it removes an edge only when the overall clusters 
weight standard deviation reduction is maximized. This 
process continues until such reduction is within a threshold 
and the desired number of clusters is obtained by finding the 
local minimum of the standard deviation reduction function. 
Since every edge in the tree is checked before a cutting, the 
problem with MSDR is its high computational cost, 
particularly for very large data sets.  
3.1. Limitations of Existing System 
 
The limitations of our existing system are: 
 Inefficient for dimensionality more than 5. 
 Huge number of computations. 
 Do not work if the boundaries of clusters are irregular. 
 More time complexity. Their standard solutions take 

about O(N2) time complexity. 

 
Fig 3. Spanning Tree after SI and after DHCA updating 

respectively 

In case, the data point is equidistant to two or more centres, 
the partition to which the data point belongs is the first one 
[1]. However, because any data point in a partition is closer 
to its cluster center (not its nearest neighbour) than to the 
center of any other partition, the data points in the clusters’ 
boundaries can be misclassified into a wrong partition. 
Fortunately, such possibilities can be greatly reduced by 
multiple runs of DHCA. To summarize, the advantage of 
DHCA is that, after multiple runs, each point will be very 
close to its true nearest neighbour in the data set. 
 
3.2 Marked Divisive Hierarchical Clustering Algorithm 

(MDHCA) 
The MST-based clustering algorithms can be more efficient 

if the longest edges of an MST can be identified quickly 
before most of the shorter ones are found. This is because, 
for some MST-based clustering problems, if we can find the 
longest edges in the MST very quickly, there is no need to 
compute the exact distance values associated with the shorter 
ones. Second, for other MST-based clustering algorithms, if 
the longest edges can be found quickly, the Prim’s algorithm 
can be more efficiently applied to each individual size-
reduced cluster. For the cases where the number of the 
longest edges that separate the potential clusters can be much 
fewer than the number of the shorter edges this divide-and-
conquer approach will allow us to save the number of 
distance computations tremendously. 
After the DHCA iterations, the partitions which are having 

data points strictly less than K+2 are marked. All these 
marked partitions are connected by searching their nearest 
neighbor in other partitions and connecting to them. This 
process is repeated until a MST is constructed. Now this 
MST is given as input to MDHCA. Here in this MDHCA, we 
use a flag array to mark all the points on one side of the 
longest edge to be 1 and all the points on the other side to be 
0. Then the DHCA can be applied multiple times with the 
partition centers being chosen only from the data points 
marked either 1 or 0, but not both. We call this procedure the 
marked DHCA (MDHCA). 
 

4. NMST-INSPIRED CLUSTERING ALGORITHM 
 

In this MST-Inspired clustering algorithm, both the DHCA 
and MDHCA are performed in a combined manner in this 
algorithm. The input is S - Dimensional Data Set[1] and K 
for the DHCA and MDHCA, while the output will be a 
Labeling array that remembers the cluster label each data 
item belongs to. MST-inspired clustering algorithm can be 
summarized in the following steps: 
Step (1)  :  Start with a spanning tree built by the Sequential     
                  initialization. 
Step (2)  :  Calculate mean and standard deviation of the            

edge   weights distance array. 
Step (3)  :  Use their sum as the threshold. 
Step (4)  :  Perform multiple runs of DHCA Algorithm. 
Step (5)  :  Identify longest edge using MDHCA. 
Step (6)  :  Remove this longest edge. 
Step (7) :  Check Terminating Condition and continue. 
Step (8) :   Put that number of clusters into C-Means  
                clustering. 
 
To summarize, the numerical parameters the algorithm 

needs from the user include the data set, the loosely 
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estimated minimum and maximum numbers of data points in 
each cluster, the input “K” to the DHCA and MDHCA, and 
number of nearest neighbours to keep for each data item in 
the auxiliary arrays, while the outputs will be the final 
distance and index arrays, and a labelling array that 
remembers the cluster label each data item belongs to. 
 

 
Fig 4. Initialization and Input 

 

Fig 5. Final MST Edges Path 
 
4.1 Advantages of Proposed System 
 Efficient use of the cut and cycle properties by our Fast 

MST-Inspired clustering algorithm. 
 Shape of a cluster has very little impact on the 

performance of this MST - based clustering algorithm. 
 Efficient for dimensionality more than 5 and reduced 

time complexity. 
 Nearest neighbor search is used to construct efficient 

MST. 
 Works efficiently even if the boundaries of clusters are 

irregular. 
 

5. CONCLUSION 
The  main  objective  of  the  paper  is  to  perform Cluster 

Analysis in Data Mining very efficiently & effectively with 
reduced time comlexity. Our paper mainly deals with 
efficient Clustering of a Data Set. Our contribution is the 
design of a new MST-inspired clustering algorithm for large 
data sets by utilizing the DHCA in an efficient 
implementation of the cut and the cycle property which is a 

more efficient method that can quickly identify the longest 
edges in an MST so as to save some computations. Our 
system is efficient for any number of Dimensions and 
reduces Time Complexity. Also Irregular boundaries can be 
efficiently handled using our MST based Clustering using 
Divide and Conquer Technique. The future work is that we 
can do a further study of the rich properties of the existing 
MST algorithms and adapt our proposed NMST-inspired 
clustering algorithm to more general and larger data sets, 
particularly when the whole data set cannot fit into the main 
memory. 
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