
QoS based Semi-Automatic Web Service
Composition using Multi-Agents Systems

G. Vadivelou#1, E. Ilavarasan*2, M.S. Yasmeen#3

#Bharathiar University,Coimbatore, Tamilnadu, India

*Department of Computer Science & Engineering,Pondicherry Engineering College, Pondicherry, India
#Department of Computer Science,K.M.Centre for P.G. Studies, Lawspet, Pondicherry, India

 Abstract-This paper presents an agent and ontology based
approach that supports the semi-automatic composition of
Web services. A Web service is an accessible application that
other applications and humans can discover and invoke to
satisfy multiple needs. To reduce the complexity featuring the
composition of Web services, two concepts are put forward,
namely, software agent and ontology. An agent is an entity
that acts on behalf of others in an autonomous fashion,
performs its actions in some level of pro-activity and reactivity
and exhibits some levels of the key attributes of learning, co-
operation, and mobility. Agent Based Systems (ABS)[11] may
be divided, roughly, into individual agents, and multi-agent
systems (MAS)[11]. Agent technology has been a hot topic,
and most likely, this is mainly due to the popularity of the
Java programming language, which represents an ideal
language for implementing software agents as it is the “Write
Once Run Anywhere” language. Ontology is a formal
representation of knowledge as a set of concepts within a
domain, and the relationships between those concepts. It is
used to reason about the entities within that domain, and may
be used to describe the domain. The Web Ontology Language
(OWL) is a family of knowledge representation languages for
authoring ontologies. This paper provides the way to select an
optimal composition of services and it also propose a
framework for Semi-Automatic Web Services Composition.

Keywords- Agents, Web Service, Web Service Composition ,
OWL-S, WSIG

I. INTRODUCTION

Web Services[1] are considered as self-contained, self
describing, modular applications that can be published,
located, and invoked across the Web. Amount of products
and services available now on the Web increases
dramatically and goes beyond user’s ability to analyse them
efficiently. At the same time the number of potential
customers available via the Internet also increases
significantly and starts to be beyond service providers’
ability to perform efficient targeted marketing. Another
important issue related to the development of Web services
is their integration and composition. Recent progress in the
field of Web Services has made it practically possible to
publish, locate, and invoke applications across the Web.
This is a reason why more and more companies and
organizations now implement their core business and
outsource other application services over the Internet.
In particular, if no single Web service can satisfy the
functionality required by a user, there should be a
possibility to combine existing services together in order
to fulfill the request. The challenge is that Web
services can be created and updated on the fly and it
is often beyond human capabilities to analyse the
required services and compose them manually.

The remainder of this paper is organized as follows. In
the next section, we will introduce the basic concepts such
as Web Service, Agents, Web Service Composition and
OWL-S. Section III describes our related work. Section
IV discusses about proposed framework. Section V
discusses about the relationship between Agent and
Ontology and finally, the paper concludes with the future
work in Section VI.

II. BACKGROUND

A . Web Service

 A Web Service [4] is an accessible application that
other applications and humans as well, can
automatically discover and invoke. An application is a Web
Service if it is

 (1) independent as much as possible from specific
platforms and computing paradigms;
 (2) Developed mainly for inter organizational
situations rather than for intra-organizational situations;
and

 (3) Easily composable (i.e., its composition with other
Web services does not require the development of complex
adapters)Web Services are, in practice, transient and stateless
processes that exist only during service execution, which
is triggered by a request coming from a consumer, or
client. Services are instantiated to perform specific tasks, thus
facilitating scalable, concurrent service provision. The
design of a Web Service is usually defined as a clearly
articulated workflow, for the sake of reliability and quality of
service.

Though Web Services has many advantages, but still there
are certain problems which need to be addressed. These are:
 (1) Provided resources and services are not in machine
understandable form, these are in human understandable
form
 (2) The representation of resources and services on the
web are unstructured and they are loosely related to each
other
 (3) Searching resources and services on the web at
present is keyword based; no semantics of the resources are
used. So by using some popular keywords, web page owner
can make his page mostly retrieval with irrelevant results and
 (4) Interoperability between toolkits.

B. Semantic Web Services

 Semantic web technology has drawn a considerable
attention of the researchers in the field of distributed

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

381

information systems, artificial intelligence, and so on.
Researchers are taking interest to make use of semantic web
technology as a central component of their software
constructions. The web services are lacking the semantic
description, the semantic web researchers have proposed to
augment web services with a semantic description of their
functionality in order to facilitate their discovery and
integration. This technology, combination of web services
with semantic web technology, is referred as semantic web
services (SWS). SWS is, therefore, an extension of web
service with an explicit representation of meanings. SWS
will support the automatic discovery, composition, and
execution of web services. Hence, it has the potentiality to
alter the way knowledge and business services are provided
and used on the web.

C. Agents
An Agent is a piece of software that acts autonomously

to undertake tasks on behalf of users. The design of many
Agents is based on the approach that the user only needs to
specify a high-level goal instead of issuing explicit
instructions, leaving the how and when decisions should be
taken by the agent. An software agent (SA)[10] exhibits
a number of features that make it different from other
traditional components including autonomy, goal orientation,
collaboration, edibility, self-starting, temporal continuity,
character, communication, adaptation, and mobility.

An agent is an entity that:
 Acts on behalf of others in an autonomous fashion
 Performs its actions in some level of pro-activity and

reactivity
 Exhibits some levels of the key attributes of learning,

co-operation, and mobility.
Software agents are an innovative technology designed to
support the development of complex, distributed, and
heterogeneous information systems. There is however no
complete standard/consensus definition of an agent. As a
result, agents tend to be characterized in terms of a
number of their behavioural attributes.

 1) Autonomy: the ability to act autonomously to some
degree on behalf of users for example by monitoring
events and changes within their environment.
2) Pro-activity: the ability to pursue their own individual
set goals, including by making decisions.
3) Re-activity: the ability to react to and evaluate external
events and consequently adapt their behaviour and make
appropriate decisions to carry out the tasks to help them
achieve their goals.
4) Communication and Co-operation: the ability to
behave socially, to interact and communicate with other
agents (in multiple agent systems (MAS)) i.e. exchange
information, receive instructions and give responses and
co-operate when it helps them fulfil their own goals.
5) Negotiation: the ability to conduct organized
conversations to achieve a degree of co-operation with
other agents.
6) Learning: the ability to improve performance over
time when interacting with the environment in which they
are embedded.

For our research purposes, we further characterize a
software agent as a running program object, capable to

initiate, receive, execute or reject a message
autonomously to attain its goals during its life cycle.

 D. Java Agent Development Environment (JADE)
JADE is fully developed in Java and is based of the

following driving principles:
• Interoperability – JADE is compliant with the FIPA
specifications. As a consequence, JADE agents can
interoperate with other agents, provided that they comply
with the same standard.
• Uniformity and portability – JADE provides a
homogeneous set of APIs that are independent from the
underlying network and Java version. More in details, the
JADE run-time provides the same APIs both for the J2EE,
J2SE and J2ME environment. In theory, application
developers could decide the Java run-time environment at
deploy-time.
• Easy to use – The complexity of the middleware is hidden
behind a simple and intuitive set of APIs.
• Pay-as-you-go philosophy – Programmers do not need to
use all the features provided by the middleware. Features that
are not used do not require programmers to know anything
about them, neither add any computational overhead

E. Web Service Integration Gateway (WSIG)

The objective of WSIG is to expose services provided
by agents and published in the JADE DF as web services
with no or minimal additional effort, though giving
developers enough flexibility to meet specific requirement.
The process involves the generation of a suitable WSDL for
each service-description registered with the DF and possibly
the publication of the exposed services in a UDDI registry.

 The WSIG add-on supports the standard Web services
stack, consisting of WSDL for service descriptions, SOAP
message transport and a UDDI repository for publishing Web
services using tModels. As depicted in Error! Reference
source not found.. WSIG is a web application composed of
two main elements:

 WSIG Servlet

 WSIG Agent

The WSIG Servlet is the front-end towards the internet world
and is responsible for

 Serving incoming HTTP/SOAP requests

 Extracting the SOAP message

 Preparing the corresponding agent action and passing it to
the WSIG Agent

Moreover once the action has been served

 Converting the action result into a SOAP message

 Preparing the HTTP/SOAP response to be sent back to the
client

The WSIG Agent is the gateway between the Web and
the Agent worlds and is responsible for

 Forwarding agent actions received from the WSIG Servlet
to the agents actually able to serve them and getting back
responses.

 Subscribing to the JADE DF to receive notifications about
agent registrations/de registrations.

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

382

 Creating the WSDL corresponding to each agent service
registered with the DF and publish the service in a UDDI
registry if needed.

Fig. 1 WSIG Architecture

Two main processes are continuously active in the WSIG
web application:

- The process responsible for intercepting DF
registrations/deregistration and converting them into
suitable WSDLs. As mentioned, this process is
completely carried out by the WSIG Agent.

- The process responsible for serving incoming web
service requests and triggering the corresponding agent
actions. This process is carried out jointly by the WSIG
Servlet (performing the necessary translations) and the
WSIG Agent (forwarding requests to agents able to serve
them).

F. Overview of Ontology and OWL-S

Ontology's are widely used in various fields like
Semantic Web, Artificial intelligence as form of
Knowledge representation. Protégé is an Ontology Editor
that allows you to design and query ontologies. Bean
generator plug-in generates java code for the ontology
and it also uses these objects in messages.

The principle objectives of OWL-S are:

(1) to provide a general-purpose representational
framework in which to describe Web Services

(2) to support automation of service management and use
by software agents

(3) to build, in an integral fashion, on existing Web
Service standards and existing Semantic Web
standards; and

(4) to be comprehensive enough to support the entire
lifecycle of service tasks.

 OWL-S is an OWL ontology[17] that may be used
to specify semantically rich characterizations of services on
the Web. OWL-S is organized into four parts.

 The profile describes capabilities and

discriminating features of Web services for purposes of
advertising and matchmaking.

 The process model provides a description of the
structure of activities involved in providing the service,

from which service requesters can derive information about
service invocation and interaction patterns.

The grounding is a description of how abstract
information exchanges described in the process model are
mapped onto actual concrete messages that flow between
the provider and the requester.

Finally, the service itself provides a means of
bundling together instances of the top-level profile,
process, and grounding classes that are meant to be used
together. OWL-S complements industry efforts such as
SOAP, WSDL[5] and BPEL4WS [18]. It builds upon these
efforts by adding rich typing and class information that can
be used to describe and constrain the range of Web service
capabilities more effectively than can be done with XML
data types. Further, in the process model, it captures not
only the control flow and data flow of Web services, but
also their prerequisites and side effects (preconditions and
effects) in the world. OWL-S’ basis in OWL[30] enables
the grouping of like services and like data types into
taxonomic hierarchies, together with definitions of the
relationships and constraints between classes and their
instances. The well-defined semantics enables formal
automated manipulation of these structures, with known
outcomes, thus providing a foundation for automation of a
variety of Web service operations, such as discovery,
matchmaking, interoperation, composition, enactment,
monitoring, and recovery.

Fig. 2 Overview of OWL-S

G. Inputs, outputs, preconditions, and results

Understanding all three components of an OWL-S service
model[10] requires understanding inputs, outputs,
preconditions, and results. The inputs are the object
descriptions that the service works on; the outputs are the
object descriptions that it produces. These descriptions are
of course not known when the process is defined; all we
can expect is the specification of their types (as OWL
classes, at the most abstract level). A precondition is a
proposition that must be true in order for the service to
operate effectively. Results consist of effect and output
specifications. An effect is a proposition that will become
true when the service completes. In general, these
propositions are not statements about the values of the
inputs and outputs, but about the entities referred to in the
inputs and the outputs.

III. RELATED WORK

Service composition[23] has been the subject of many
research projects, such as the Ninja project and
SAHARA which includes specifications for WSDL[5],
SOAP and other protocols that may be used to describe,

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

383

access, execute, and discover services on the Web. There are
several works on incorporating agents into Web Service
systems.

In particular, Gibbins [2] et al demonstrated usage of
DAML-S for Web Services descriptions within agents.
Another step towards incorporating Web Services into
agents is proposed by Ardissono et al . Since their focus
has been set to non-symbolic negotiation, their work could
be seen as a complementary part to our work, where we
focus on logic-based Web Services Composition.

Zakaria Maamar [9] develops a service composition
framework, in which multiple-agent-system that composes of
composition agent, service agent and service instance agent is
the engine of service composition. During the
composition process, software agents engage in
conversations with their peers to agree on the Web
Services that participate in this process. Conversations
between agents take into account the execution context of
the Web Services. But this paper doesn’t consider
context aware service.

In this paper, Korhonen, et al. describes the creation
of a workflow ontology that is used to describe both agents
and Web services. They hope to build a workflow
enactment mechanism that can utilize the ontology to
bridge the communications gap between agents and Web
Services.

David Martin[10] discusses how to use the OWL-S. This
paper shows how to use OWL-S in conjunction with Web
service standards, and explains and illustrates the value
added by the semantics expressed in OWL-S. But this
paper doesn’t consider Web service composition.

IV. PROPOSED FRAMEWORK

The proposed framework (See Figure 3) supports

the construction and execution of semi-automatic service
composition. The system architecture is based on three
categories of components: Service Discovery
Component[26], Process Building Components, and Process
Configuration & Execution Components

Figure 3: Proposed Framework for Semi-Automatic Composition

1) Service Discovery Component
The providers publish their web services on a web services
registry.
[Service Discovery]: The Service Discovery & Registry has
registry, discovery and selection functions. The web services
are registered in JUDDI registry and then the web services
uses a gateway WSIG to integrate the requested services by
comparing their semantic descriptions with the available
registered services.
2) Process Building Components
The process developer uses a IDE in order to build a generic
process template. It uses a published domain ontology which
is related to a specific organization to describe participating
activities semantically. Protégé is an Ontology Editor that
allows you to design and query ontologies. Bean generator
plug-in generates java code for the ontology and it also uses
these objects in messages
3) Process Configuration and ExecutionComponents
The Client uses the Agent programming and WSIG to
configure a process template and to compose the optimal web
services. Then the process can be executed. The following
components allow realizing this objective:
[Client User Interface]: a add-ons which handles the
communication between the end-user and the platform. It lets
the user choose a optimal web services in order to achieve
the composition. After process configuration, the process is
executed .
[Process Generator]: Agent handles the process
configuration and converts the generic process into an
executable one.
[Execution Engine]: OWL-S is an ontology and a language
to describe web services The project aims to create an easy-
to-use editor for creating OWL-S services. The editor is
being developed as a plug-in to the protégé ontology editor.
Some important features of OWL-S editor are: good
overview; graphical editing; import/export; WSDL support;
and input/output/precondition/ result manager.

V. IMPLEMENTATION

Travel Agency Management System (TAMS) is
taken as the case study The purpose of this case study is to
create an agent-based software system which gives the
customers about the travelling details and also gives
information about flights, rail and accommodation. The case
study is implemented in Java1.6 using JADE[15] framework
for Agent programming, Protégé for creating ontologies[17]
,OWL-S[10] editor for composing the web services and
WSIG 2.3 for integrating agents and web services. Sample
screen shots are shown in the figures 4,5,6,7,8 and 9.

Figure 4: Selecting the Source Location In TAMS

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

384

Figure 5: Selecting the Destination location in TAMS

Figure 6: Agent Communication in JADE

Figure 7: Screenshots of Airline Reservation

Figure 8: Screenshots of Hotel Reservation

A) Integrating Agent and OWL-S

 OWL-S[10] explicitly supports the description of
services as classes of activities, so that agents can reason
about the possible benefit of using them, determine the
content of the messages necessary to invoke them, and
interpret responses from them. This is substantially different
than the rationale behind agent communication languages
(ACLs), such as the Knowledge Query and Manipulation
Language (KQML) or the Foundation for Intelligent Physical

Agents (FIPA) ACL, developed during the 1990’s. ACLs like
KQML and FIPA [22] were designed primarily to provide a
uniform syntax and semantics for messages with arbitrary
content, passed between software agent peers. In contrast, the
OWL-S process ontology is a framework for describing more
abstractly the service activities themselves, and likely
sequences of such activities. OWL-S[14] descriptions of the
inputs and outputs of individual atomic activities characterize
the information conveyed in the underlying WSDL input and
output messages. The OWL-S grounding model translates the
inputs and outputs of OWL-S service descriptions from
OWL[12] into the XML elements of corresponding WSDL
messages. But it can just as properly be used to translate that
information into a KQML or FIPA message format for
communications with agents that provided services using an
ACL message transport mechanism.

Figure 9: Overall Screenshots of TAMS

Figure 10: Agent and Ontology Architecture

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

385

OWL-S groundings[29] used with KQML or
FIPA[22] must relate atomic processes to ACL message
patterns with specific performatives and perhaps even
specific content forms. The performatives referenced in these
messages patterns depend on the type of service provided,
and the kind of action triggered by the message. In summary,
OWL-S abstracts[27] away the details of the message-level
interactions of both ACLs and web service message
languages like WSDL. Instead, it focuses on characterizing
the content and workflow of interactions with services so that
client systems can perform the reasoning necessary to
interoperate with them automatically. The ontology and agent
architecture is shown in Figure 10.

VI. CONCLUSIONS AND FUTURE ENHANCEMENTS

This paper has proposed an framework for semi-
automatic composition at abstract service using agents, web
services and ontology. In future enhancement, the Web
service composition[7] can be done in Automatic
Methods[19] using AI Techniques considering QoS factors
of web services.

REFERENCES

[1] W3C. Web services activity (web site)". http://www.w3c.org/2002/ws/

[2] N.Gibbins, S. Haris and N.Shadbolt. “Agent- Based Semantic Web
Services”. In Proceedings of the 12th Int. WWW Conf., WWW2003,
Budapest, Hungary, 2003, ACM Press, 2003, pp.710-717.

[3] S. McIlraith, and T.C. Son. “Adapting Golog for composition of
Semantic Web services”, Knowledge Representation and Reasoning
(KR2002), Toulouse, France, 2002.

[4] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The Next
Step in Web Services,” Comm. ACM, vol. 46, no. 10, Oct. 2003.

[5] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1, 2001.
At http://www.w3.org/TR/2001/NOTE-wsdl- 20010315

[6] J. Rao, P. Kungas, and M. Matskin, “Logic-based Web services
composition: from service description to process model”, The 2004 Intl
Conf on Web Services, San Diego, USA, 2004.

[7] S. McIlraith, T. Son, and H. Zeng. “Semantic web services”, IEEE
Intelligent Systems, 2001, 16(2):46–53.

[8] T. Andrews et. al., BPEL v1.1. (2007).
[Online].Available:http://www.ibm.com/developerworks/library/specif
ication/ws-bpel/

[9] Zakaria Maamar, Soraya kouadri Mostefaoui and Hamdi Yahyaoui,
“Towards an Agent Based and Content Oriented Approach for Web
Services Composition”, IEEE Transactions on knowledge and Data
Engineering, 2005.

[10] David Martin, Mark Burstein, Sheila Mc Ilraith, Massimo Paoulucci
and Katia Sycara, “OWL-S and Agent Based Systems”, Members of
the OWL-S Coaliation”, USA, 2004.

[11] David Martin, Massimo et al, “Bringing Semantics to web services: The
OWL-S approach”, Artificial Intelligence Center, SRI International,
Menlo Park CA, USA, 2004.

[12] Jing Dong, Yongtao sun and Sheng Yang, “OWL-S Ontology
Framework Extension for Dynamic web service composition”, USA,
2006.

[13] Zhonghua Yang, Zhang Jing Bing, Jiao Tao, Robert Gay,
“Characterizing services composeability and OWL-S based services
composition”, Singapore, 2005.

[14] David Martin et al, “Bringing Semantic to web services with OWL-S”,
Springer science and Business Media, LLC, 2007.

[15] Ahmed Sallam, Zhiyong Li and Shaimea Hassan, “Web services
supervision system based on JADE”, China, JDCTA journal, 2010.

[16] Farhan Hassan Khan et al, “QoS based dynamic web composition and
execution”, In proceeding of Int’l journal of computer Science and
Information Security(IJCSIS), 2010.

[17]Jose Luis Ambite et al, “Argos: An ontology and Web service
composition Infrastructure for goods movement Analysis”, USA, 2004.

[18] Muhammad Ahtisham Aslam et al, “From BPEL4WS process model to
Full OWL-S ontology”, School of Computer and Information sciences,
University of South Australia, Australia, 2006

[19] Mithun Sheshagiri, “Automatic Composition and Invocation of
Semantic web services”, M.Sc thesis, Department of Computer Science,
University of Maryland, 2004.

[20] Lin Padgham and Michael winikoff, “Developing Intelligent Agent
Systems, A practical guide”, RMIT University, Melbourne, Australia,
2005.

[21] Jing Dong et al, “Dynamic Web service composition based on OWL-S”,
Springer, 2006.

[22] Esteban Leon Soto, “FIPA Agents Messaging grounded on web
services”, German Research center for Artificial Intelligence (DFKI),
2006.

[23] Biplav srivastava and Jana Kochler, “Web service composition- current
solution and open Problems”, ICAPS, 2003.

[24]R.Jayaprakash and R. vimal Raja, “ Evaluating web service composition
methods with the help of a Business Application”, In proceeding of the
Int’l journal of Engineering Science and Technology(IJEST), IEEE,
2010.

[25] Jinghai Rao and Xiaomeng su, “A survey of automated web service
composition methods”, Department of Computer and Information
Science, Norway, 2005.

[26] Abdaladhem Albreshne and Jacques Pasquier, “Semantic-based Semi-
automatic Web service composition”, Computer Department,
Switzerland, 2010.

[27] Katia Sycara and David Martin, “Tools and Technologies for semantic
web services: An OWL-S perspective”, ISWC, 2006.

[28] N. Kavantzas, D. Burdett, and G. Ritzinger, WSCDL v1.0. (2004).
[Online]. Available:

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
[29] OWL-S: Semantic Markup for Web Services, W3C Member

Submission, (22 November 2004). [Online].
Available: http://www.w3.org/Submission/OWL-S/.
[30] Deborah L. McGuinness and Frank van Harmelen, “OWL Web

Ontology Language Overview”. World Wide Web Consortium (W3C)
Candidate Recommendation. August 18, 2003. At
http://www.w3.org/TR/owl-features/

[31] The Universal Description, Discovery and Integration (UDDI) protocol.
Version 3, 2003. At http://www.uddi.org/

G. Vadivelou et al IJCSET |August 2011 | Vol 1, Issue 7, 381-386

386

