
Analysis and Grouping of Movable Object Patterns
Using Similarity Measure of Trajectories in

Wireless Sensor Networks
Vijayasaradhi Thommandru1, Subramanyam Kodukula1, Vamsidhar Talasila *2 and Anusha Peruri *2

1, Dept of CSE, K L University.
Green Fields, Vijayawada, India

*2M.Tech (CSE)
Green Fields, K.L.Univerisity,

Vijayawada, India.

Abstract — Many natural phenomena show that objects
often exhibit some degree of regularity in their movements.
However, previous works focus on finding the movement
patterns of each single object or all objects. In this paper, we
propose an efficient distributed mining algorithm to jointly
identify a group of moving objects and discover their
movement patterns in wireless sensor networks. As the
movements of an object are regular, the object’s next location
can be predicted based on its preceding locations. We model
the regularity by using the Variable Length Hidden Markov
Model (VLHMM). If a pattern occurs more frequently, it
carries more information about the movements of an object.
To find out these information patterns, we first define the
pattern as a significant pattern by adapting a Prediction
Suffix Tree (PST) with improved smoothening factor. Our
distributed mining algorithm comprises of Group Trajectory
Mine (GTM) and Cluster Ensemble (CE) algorithms. In
GTM, we propose a new similarity measure known as
minkowski, which is used to compute the similarity of moving
objects. In CE phase, our algorithm combines the multiple
local grouping results which come from the GTM algorithm.
We further leverage the mining results to track moving
objects efficiently.
Keywords --- Distributed Clustering, Similarity measure,
Object Tracking, WSN, Prediction Suffix Tree

1. INTRODUCTION
 Recent advances in wireless sensors and mobile
technologies have to equip their devices with positioning
sensors that utilize the global positioning system (GPS).
Accurate positioning of mobile devices makes the way for
the deployment of location based services and applications
like object tracking, environmental monitoring etc. These
applications flood in with large amounts of moving object
data. This results in transmission and storage challenges in
WSN's, Since it has constrained resources such as on-
board, non - refreshable battery power, computation
capability and storage.
 Object tracking is an important application of WSN's.
Tracking consists of deleting and monitoring locations of
real world objects, possibly using several types of sensing
such as acoustic, seismic, electromagnetic etc. Object
tracking sensor networks have two critical operations.
First, monitoring: sensor nodes are required to detect and
track the movement states of mobile objects. Second,
reporting : the nodes that sense the objects need to report
their discoveries to the applications. These two operations
are interleaved during the entire object tracking process.
 In object tracking applications many natural
phenomena shows that objects often exhibit some degree of

regularity in their movements. The movements of creatures
are temporally and spatially correlated. Biologists have
found that many creatures such as elephants, zebra, whales
and birds form large social groups when migrating to find
food or for breeding or wintering. These characteristics
indicate that the trajectory data of multiple objects may be
correlated for biological applications. More over some
research domains, such as the study of animals behavior
and wild life migration[1], [2], are more concerned with
the movement patterns of group of animals, not
individuals; hence, tracking each object is unnecessary in
this case. This raises a new challenge of finding moving
animals belonging to the same group and identifying their
aggregated group movement patterns. Therefore, under the
assumption that objects with similar movement patterns are
regarded as a group, we define the moving object
clustering problem as given the movement trajectories of
objects, partitioning the objects into non overlapped groups
such that the number of groups is minimized. Since there
are inherent variations in the number of groups and their
sizes (e.g., elephant herds may contain 8-100 individuals,
depending on the environment and family size [11]), it is
difficult to predetermine these two parameters. Therefore,
we use the HCS algorithm [12] to cluster objects efficiently
without pre specifying the number of groups or their sizes.
 Discovering the group movement patterns is more
difficult than finding the patterns of a single object or all
objects, because we need to jointly identify a group of
objects and discover their aggregated group movement
patterns. On the one hand, the temporal-and-spatial
correlations in the movements of moving objects are
modeled as sequential patterns in data mining to discover
the frequent movement patterns [3], [4], [5], [6]. On the
other hand, previous works, such as [7], [8], [9], measure
the similarity among these entire trajectory sequences to
group moving objects.
 In this paper, we first introduce our distributed
mining algorithm to approach the moving object clustering
problem and discover group movement patterns. Previous
works focus on finding the significant patterns by using the
prediction suffix trees (PSTs). But it has a smoothening
problem. To overcome this problem, we are using
improved smoothening factor in constructing PSTs. Our
distributed mining algorithm comprises a Group Trajectory
Mine (GTM) and a Cluster Ensemble (CE) algorithms. The
GTM algorithm discovers the local group movement
patterns by using a novel similarity measure. In previous
paper, to measure the distance between significant patterns,

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

519

Euclidean distance is used. But this is not appropriate when
objects have high-dimensions. So, we propose a similarity
measure by using the minkowski distance. CE algorithm
combines the local grouping results to remove
inconsistency and improve the grouping quality by using
the Jaccard coefficient. In contrast to approaches that
perform clustering on entire trajectories at a central server,
the proposed algorithm discovers the local group
relationship in a distributed manner on sensor nodes
 The contribution of this paper is threefold. First, we
propose a prediction suffix tree with improved
smoothening factor to find out the significant movement
pattern. Second, we propose a new pair wise measure
distance based on pattern similarity. To compute the
similarity of moving objects we use minkowski distance.
Third, we use the discovered information to track moving
objects efficiently. The remainder of this paper is
organized as follows: In Section 2, we review related
works. Section 3, provide an overview of our network
model and location model. In Section 4, we describe the
design of our Group trajectory mining algorithm. Section 5,
we summarize our conclusions.

2. RELATED WORK
2.1 Movement Pattern Mining
 The temporal-and-spatial correlations and the
regularity in the trajectory data sets of moving objects are
often modeled as sequential patterns for use in data mining.
Agrawal and Srikant [13] first defined the sequential
pattern mining problem and proposed an Apriori-like
algorithm to mine frequent sequential patterns. Han et al.
proposed Free Span [14], which is an FP-growth-based
algorithm that addresses the sequential pattern mining
problem by considering the pattern-projection method. For
handling the uncertainty in trajectories of mobile objects,
Yang and Hu [15] developed a new match measure and
proposed Trajpattern to mine sequential patterns from
imprecise trajectories. Moreover, a number of research
works have been elaborated upon mining traversal patterns
for various applications. For example, Chen et al. [16]
proposed the FS and SS algorithms for mining path
traversal patterns in a Web environment while Peng and
Chen [17] proposed an incremental algorithm to mine user
moving patterns for data allocation in a mobile computing
system. However, sequential patterns or path traversal
patterns do not provide sufficient information for location
prediction or clustering. To discover significant patterns for
location prediction, Morzy proposed Apriori-Traj [18] and
Traj-Prefix Span [19] to mine frequent trajectories, where
consecutive items of a frequent trajectory are also adjacent
in the original trajectory data. Meanwhile, the approach in
[20] extracts T-patterns from spatial temporal data sets to
provide concise descriptions of frequent movements. Tseng
and Lin [21] proposed the TMP-Mine algorithm for
discovering the temporal movement patterns of objects.
2.2 Trajectory Clustering
 Recently, clustering based on objects’ movement
behavior has attracted more attention. For example, Li et
al. [22] employ Moving Micro clusters (MMC) to discover
and maintain a cluster of moving objects online.
Meanwhile, Lee et al. [23] proposed trajectory clustering to
discover popular movement paths. Clustering similar
trajectory sequences to discover group relationships is

closely related to our problem. Wang et al. [24] transform
the location sequences into a transaction-like data on users
and based on which to obtain a valid group. However, the
proposed AGP and VG-growth algorithms are Apriori-like
or FP-growth based algorithms that suffer from high
computing cost and memory demand. Nanni and Pedreschi
[25] apply a density-based clustering algorithm to the
trajectory clustering problem based on the average
euclidean distance of two trajectories. However, the above
works that discover group information based on the
proportion of the time a group of users stay close together
or the average euclidean distance of the entire trajectories
may not reveal the local group relationships, which are
required for many applications.
2.3 Similarity Measure
 Identifying the similarity (or distance) between two
trajectories is essential for clustering. Computing the
average euclidean distance of two geometric trajectories is
a simple and useful approach. Nevertheless, the geometric
coordinates are expensive and not always available. Other
approaches, such as EDR, LCSS, and DTW, are widely
used to compute the similarity of symbolic sequences [26].
However, the above dynamic programming approaches
suffer from scalability problem [27]. Therefore,
approximation or summarization techniques are used to
represent original data for providing scalability. However,
when projecting each data sequence into a vector space of
sequential patterns, the importance of a sequential pattern
regarding to each data sequence is not mentioned. In
addition, Yang and Wang [28] employ a probabilistic
suffix tree to learn the structural features of sequences and
proposed a new similarity measure which computes the
similarity of a probabilistic suffix tree and a sequence.
Their clustering algorithm iteratively identifies a sequence
to a cluster and adjusts the representative probabilistic
suffix tree for each cluster. However, the generated clusters
may overlap which differentiates their objective from ours.
2.4 Distributed Clustering
 Distributed clustering is an important research topic.
Most of the approaches proposed in the literature focus on
seeking a combination of multiple clustering results to
achieve better clustering quality, stability, and scalability.
For example, Strehl and Ghosh [29] introduced and
formulated the clustering ensemble problem to a
hypergraph partitioning problem, and proposed CSPA,
HGPA, and MCLA to compute the best K-partition of the
graph. Ayad et al. [30] presented a probabilistic model to
combine cluster ensembles by utilizing information
theoretic measures. Fred and Jain [31] combine multiple
runs of the K-means algorithm with random initializations
and random numbers to obtain the final consensus
partition. Fern and Brodley [32] apply random projection
to the high dimensional data and cluster the reduced data
by using EM for a single run of clustering. The Collective
PCA technique [33] proposed by Kargupta et al. is applied
to reduce the vector dimension for distributed clustering of
high dimensional heterogeneous data. The data types of the
above works [30], [31], [32], [33], [34] are most integer
vector or categorical data, and their related issues are
thereby different from ours. In addition, previous works
that require a predetermined k in their clustering or
Ensemble algorithms are not suitable for our applications.
Besides, although the local grouping results in a vector of

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

520

integers, each of which represents the mapping between an
object and its belonging group, dimension reduction like
Collective PCA [33] is unnecessary in our case.

3. PRELIMINARIES
3.1 Hierarchical Object Tracking Sensor Network
 Many researchers believe that a hierarchical
architecture provides better coverage and scalability, and
also extends the network lifetime of WSNs [35], [36]. In a
hierarchical WSN, such as that proposed in [37], the
energy, computing, and storage capacity of sensors are
heterogeneous. A high end sophisticated node, such as Intel
Stargate [38], is assigned as a CH to perform high
complexity tasks; while a resource constrained node, such
as Mica2 mote [39], performs the sensing and low
complexity tasks. In this work, we adopt a hierarchical and
cluster-based network structure with K layers. As shown in
Fig. 1a, the nodes are clustered in each level, and each
cluster is a mesh network of fixed size, i.e., each cluster is
a set of n x n sensors. We assume that each sensor in a
cluster has a locally unique ID, and denote the sensor IDs
by an alphabet Ʃ . Fig. 1b shows an example of a two-
layer network structure, where each cluster contains 16
nodes whose IDs are identified by Ʃ = { a, b,......, p }.
 The sensor nodes at each level are divided into some
equal number of clusters and we assume that each cluster
in that level having a individual cluster heads called Virtual
Center Heads (VCHs). VCHs acts like a bridge between
sensor nodes and Cluster Head (CH). All the VCHs at that
level together form a global cluster head. These VCHs will
collect the location data from the respective clusters.
VCHs are also used to combined and transmit the location
data of the object to its Global Cluster Head effectively.
From the Global Cluster Head the data will be transmit to
the Cluster head of the next level. Here we are considering
the transmission traffic as a effective parameter and reduce
it by using these VCHs. First the object location data will
be collected by the sensors and here for 16 sensor nodes , 4
VCHs are used at each level to transmit the location data to
its Cluster Head independently. By introducing this
concept we will able to reduce the so much of network
traffic in terms of packets and reduce the work load at the
Cluster Head (CH). Whenever the work load of Cluster
Head was reduced then automatically the data acquisition
speed at the sink also increased. By using these VCHs
overlapping overhead of location data also minimized at
the time of transmission.
 In this work, an object is defined as a target, such as
an animal or a bird, that is recognizable and trackable by
the tracking network. A cluster of sensors communicate
with each other by using multi hop routing, and wake up on
their duty cycles to carry out a given task [40]. They
collaboratively gather or relay remote information to a base
station called a sink. Take the tracking application for
example. When a sensor wakes up and detects an object of
interest, it transmits the location data of the object to its CH
and then enters the sleep mode. The CH aggregates the
data and forwards it to the CH of the upper layer. The
process is repeated until the sink node receives the location
data. The data flow is as shown in Fig. 1 [43]. When a task
of discovering the group relationships of objects is
assigned, it is unnecessary to transmit all the location data
to the sink for post processing. In our design, CHs collect

the location data for a period and generate location
sequence data sets locally. Then, based on the data sets, our
mining algorithm tries to discover the group relationships
about the objects of interest. Geometric models and
symbolic models are widely used to represent the location
of objects [41]. A geometric location denotes precise 2-
dimension or 3-dimension coordinates; while a symbolic
location represents an area, such as the sensing area of a
sensor or a group of sensors, defined by the applications.
Since the accurate geometric location is not easy to obtain,
in this work, we employ a symbolic model and take the
sensors’ IDs as the locations of an object of interest.
Sensors are closely deployed to ensure complete coverage
of the monitored area, but this causes consistency and
redundancy problems. Techniques like the Received Signal
Strength (RSS) [42] simply estimate an object’s location
based on the ID of the sensor with the strongest signal and
eliminate unnecessary transmissions. The trajectory of a
moving object is thus model as an ordered sequence of
sensor IDs, i.e., a location sequence denoted by s =
σ0,σ1....σl-1, where σi ϵ Ʃ and l is the sequence length.

Fig. 1. The hierarchical and cluster-based network structure
and the data flow of an update-based tracking network.

3.2 Variable Length Hidden Markov Model
 (VLHMM) and Prediction Suffix Tree (PST)
 If the movements of an object are regular, the object’s
next location can be predicted based on its preceding
locations. We model the regularity by using the Variable
Length Hidden Markov Model (VLHMM). The VLHMM
is superior in its efficiency and accuracy of modeling
multivariate time-series data with highly-varied dynamics.
Our motivation of developing VLHMM comes from the
following observations: (1) although the first-order HMM
(HMM) is efficient in learning, it is inaccurate in modeling;
(2) the fixed-length high-order HMM (n-HMM) is accurate
in modeling but, because of its huge number of parameters,
is not efficient; (3) Various variants to n-HMM, including
the Mixture Transition Distribution (MTD), introduces
mathematical constraints to simplify n-HMM. Although
the simplification reduces model complexity, it also
reduces the generality and accuracy of modeling. Unlike
these variants that compromise between HMM and n-
HMM, VLHMM is both accurate and efficient.
 Variable Length Markov Model (VLMM) is an
"observable" Markov model and can only model sequences
of discrete values; whereas VLHMM is a "hidden" model
and can model sequences of discrete/continuous and

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

521

scalar/vector values. Learning VLMM only needs to
optimize the Minimum-Entropy criterion, whereas learning
VLHMM needs to optimize both the Minimum-Entropy
and the Maximum-Likelihood criteria. In some papers,
VLMM was used to learn a sequence of continuous/vector
values. This is done by (1) discarding the order of the
values in the sequence, (2) clustering the values into a
finite number of clusters, (3) substituting each value of the
sequence by its cluster index, and (4) learning VLMM from
the sequence of cluster indices. However, this method is far
from optimal, because the error introduced in the clustering
step (usually called quantization or discretization) caused
by discarding the order information may be very large and
is out of control. In fact, learning a hidden Markovian
model (HMM, n-HMM, or VLHMM) is itself a clustering
process, where each cluster is represented by an output
probability distribution function. Due to these advantages,
a wider variety of patterns can be mined from VLHMM
than from other models.
 When a pattern “s” occurs more frequently, it carries
more information about the movements of the object and is
thus more desirable for the purpose of prediction. To find
the informative patterns, we first define a pattern as a
significant movement pattern if its occurrence probability
is above a minimal threshold. To learn the significant
movement patterns, we adapt Prediction Suffix Tree (PST).
Previous works focus on finding the significant patterns by
using the probability suffix trees(PSTs). PST provides very
simple solution to the problem, probability smoothening. It
has some drawbacks. First, the same constant value γmin is
added to every probability, whatever the observed
frequency and the probability of the event are. Second, the
same floor probability γmin is assigned to all unseen events,
whatever the suffix is. To overcome these drawbacks, we
propose PST with improved smoothening factor known as
Kneser-Nay-back-off smoothing. Kneser and Ney showed
that using the back-off distribution even if the main
distribution is not null leads to a better model. We then
have:

P(σ|s) = ൝ (௦,ఙ)ିௗ∑ (௦,ఙ)ࣕ࣌Ʃ ,ݏ)ߚ(ݏ)ଵߙ + ,ݏ)ܿ ݂݅ (ߪ (ߪ > ,ݏ)ߚ(ݏ)ଵߙ 0 ݁ݏ݅ݓݎℎ݁ݐ (ߪ

 Where ߙଵ(ݏ) is a normalization factor.
 The PST building algorithm extracts significant
patterns from a sequence (or a dataset) and prunes
unnecessary nodes during tree construction, and then
generates a PST. A PST over Σ is a non-empty tree, in
which nodes vary in degree between zero and |Σ|. Each
edge in the tree is labeled by a single symbol of Σ such
that no symbol can be represented by more than one edge
branching out from any single node. Each node in the tree
is labeled by a string s, which is a sequence generated by
walking up the tree from that node to the root. In addition,
each node also contains the conditional empirical
probabilities, i.e., P (σ | s), for every σ ε Σ. Note that the
maximal memory length (or maximum height) of a PST is
specified by L max ; and the criteria for the PST building
algorithm to create a node of a sequence s are as follows:
1) The occurrence probability of s must be above the
minimal support P min ; 2) the transition behavior P (σ | s)
must differ significantly from that of the parent.
 Fig. 2 shows the PST_build algorithm. The input of the
algorithm includes the PST parameters (Pmin, α, γmin, r,

Lmax) and a location sequence S; Pmin is the minimal
support of patterns; α is a parameter that together with the
smoothing probability defines the significance threshold;
γmin is the smoothing probability; r is a measure of the
difference between the conditional probability of the
candidate and its father node; and Lmax is the maximal
memory length (maximal height of the tree). The output of
the PST_build algorithm is a PST T that contains the
significant patterns in S. The algorithm starts by initializing
T and then computes the candidate patterns with Length 1
(Lines 3-5), where getP(σ,S) is a function that returns P(σ)
based on S. As shown in Lines 10-11, the algorithm checks
whether each candidate is qualified to be a node in the tree.
If the candidate s is qualified, a node associated with s and
the nodes on the path to the root node are added to the PST
(Lines 12-16). Next, the algorithm extends the candidates,
as shown in Lines (18-20), Finally, it smoothens the
conditional probabilities of all nodes in T to avoid zero
conditional empirical probabilities (Lines 22-24),
where ܿ(ݏ, is the number of times σ was seen after the (ߪ
suffix s and ݀ is the discount parameter, which may
depend on ܿ(ݏ, ,ݏ)ߚ is a normalization factor and (ݏ)ଵߙ .(ߪ is the back-off distribution. A node labeled with a (ߪ
sequence s is a significant pattern of T, denoted by s ε T.

Algorithm: PST_build
Input: Pmin, α, γmin, r, Lmax, Σ, S=s0,s1,….sn-1

Output: T
0. /* Initialization */
1. T = node (root, S)
2. X = Ǿ
3. for each σ ε Σ
4. if get P(σ, S) ≥ Pmin then
5. add σ to X
6. /* Building the PST skeleton */
7. while X ≠ Ǿ
8. for each s ε X
9. remove s from X
10. if exists σ є Σ and getCP(σ, s, S) ≥ (1+α)γmin and
11. getCP(σ,s,S1) >r getCP(σ,s,S1) >1/r

getCP(σ,suf(s),S) getCP(σ,suf(s),S)
then

12. add node(s, S)to T
13. S1=S
14. while exists suf (S1)
15. add node(suf(S1),S) to T
16. S1= suf(S1)
17. If |S|<Lmax then
18. for each σ є Σ
19. If get P(σ s, S)≥ Pmin then
20. add σ s to X
21. /* smoothing the conditional probabilities*/
22. for each node nd in T
23. for each σ є Σ
24. nd.P(σ|s)= ൝ (௦,ఙ)ିௗ∑ (௦,ఙ)ࣕ࣌Ʃ + ,ݏ)ߚ(ݏ)ଵߙ ,ݏ)ܿ ݂݅ (ߪ (ߪ > ,ݏ)ߚ(ݏ)ଵߙ 0 ݁ݏ݅ݓݎℎ݁ݐ (ߪ

25. return T

 Fig.2. The PST_build algorithm.

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

522

PST is useful and efficient in predicting the next item of a
sequence. The algorithm’s Computational overhead is
limited by the height of a PST so that it is suitable for
sensor nodes. PST is frequently used in predicting the
occurrence probability of a given sequence, which provides
us important information in similarity comparison. The
occurrence probability of a sequence s regarding to a PST
T, denoted by PT(s) , is the prediction of the occurrence
probability of s based on T. For example, the occurrence
probability PT (“avsno”) is computed as follows:

PT(“avsno”) = P(a) P(v/a) P(s/av) P(n/avs) P(o/avsn)

 = φεa φ εavφ εavs φεavsn φεavsno

 = 0.67 X 0.5 X 1 X 1 X 1 = 0.33

4. DISCOVERY OF GROUP MOVEMENT
PATTERNS

4.1 Design of the Distributed Trajectory Mining
Algorithm
 In this work, we model the movement of an object by a
VLHMM, and use a PST to mine the significant movement
patterns. A set of moving objects is regarded as belonging
to the same group if they share similar movement patterns.
In this section, we first propose a new similarity measure to
define the pair wise similarity of moving objects. The
advantages of the new proposed similarity measure simp
include its efficiency and its accuracy. First, simp compares
the similarity of two objects based on their significant
movement patterns instead of their entire location
sequences. Thus, simp can provide efficiency for the
applications with evolving and evolutionary similarity
relationships. Second, it considers the importance of each
movement pattern regarding to each individual object so
that it achieves better accuracy in similarity comparison.
With the definition of simp, two objects are similar if their
similarity score is above a minimal threshold. A set of
objects is regarded as a group if each object is similar to at
least half the members of the same group.
 To tackle the problem of discovering groups of
moving objects, we propose a distributed mining algorithm
comprised of a GTMine algorithm and a CE algorithm as
shown in Fig. 3. The GTMine algorithm uses a PST to
generate the significant movement patterns and computes
the pair wise similarity of moving objects by using simp. It
utilizes the HCS algorithm to cluster the moving objects
into non overlapped groups. The sink applies the CE
algorithm to combine the local grouping results. The CE
algorithm utilizes the Jaccard similarity coefficient to
measure the similarity between a pair of objects, and
normalized mutual information (NMI) to derive the final
ensembling result Gδ

1 .
At the local end, CHi performs the GTMine algorithm to
generate local grouping result Gi while the sink performs
the Cluster Ensemble algorithm to combine the local
grouping results into a consensus final result Gδ

1.

Fig. 3. The framework of our distributed mining

algorithm:

4.2 Similarity Measurement Using Minkowski
 In this work, we use a PST to mine significant
movement patterns of an object, where a significant
movement pattern is a subsequence with occurrence
probability higher than a minimal threshold. Each node of a
PST represents a significant movement pattern and carries
its conditional probabilities, and all nodes of a PST provide
the precise information about the predicted occurrence
probability of a given pattern. To provide better
discrimination accuracy, we propose a new similarity
measure simp that adequately and skillfully utilizes the
information carried by PSTs to measure the similarity of
two objects. The design concepts of simp are simple and
useful. The importance of a pattern s is modeled by using
the predicted occurrence probability, i.e., PT (S),while the
difference of a pattern is defined over all of the
dimensions, i.e., PT (σ | s) . Based on the two concepts, we
define the distance a pattern 's' associated with two objects
oi and oj as
(࢙)ࢊ = ඥ∑ Ʃࣕ࣌) (࢙࣌)ࢀࡼ − ((࢙࣌)ࢀࡼ

 -------- (1)
then i.e., ඨ Ʃࣕ࣌) (࢙)ࢀࡼ × (࢙|࣌)ࢀࡼ − (࢙)ࢀࡼ × ((࢙|࣌)ࢀࡼ

Fig. 4. The maximal value of ƩsϵS1 d(S) of the two PSTs is

6 + √2

 where Ti and Tj are their respective PSTs. d(s) is the
minkowski distance of products of the importance and
difference over 'Ʃ' related to oi and oj. Note that since the
similarity of two objects is symmetric in our applications,a
symmetric measure, such as minkowski distance, is more
desirable. Furthermore, for a pattern s ϵ Ti, PT

i (s) is a

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

523

significant value because the occurrence probability of 's' is
higher than the minimal support Pmin. If oi and oj share the
pattern 's', we have s ϵ Ti and s ϵ Tj, respectively, such that
PTi (s) and PTj (s) are non-negligible and meaningful in the
similarity comparison. Thus, we define the similarity score
of oi and oj by using all of their significant movement
patterns as follows:

Simp(Oi,Oj)= - log
∑ ට∑ Ʃࣕ࣌) ೞചೄ((࢙࣌)ࢀࡼି(࢙࣌)ࢀࡼ ଶ ೌೣ ା √ଶ --- (2)

 where S1 denotes the union of significant movement
patterns (nodes) of both objects (trees). We sum d(s) for all
s ϵ S1 as the distance between two PSTs and normalize it
by its maximal value, i.e., 2Lmax + √2. For example, the
PSTs shown in Fig. 4 are built for two sequences "aa...a"
and "bb...b" with α = 0, r = 1, and Lmax = 3. The distance
between two PSTs is 6 + √2, where S1 = {"a", "aa", "aaa",
"b", "bb", "bbb"}. Thereafter, we take the negative log of
the distance between two PSTs as the similarity score such
that a larger value of the similarity score implies a stronger
similar relationship, and vice versa. The worst-case
complexity of computing simp is O(Lmax X |Ʃ| X |S1|).
Therefore, the complexity of building a PST and scoring
the similarity between two PSTs is O(Lmax X |Ʃ| X |S1| + l),
where l is the sequence length.
4.3 Group Trajectory Mine (GTM) Algorithm
We now describe the GTMine algorithm, which identifies
groups of objects and determines their movement patterns.
The minimal similarity threshold (simmin) is the lower limit
of the similarity between two objects belonging to the same
group. Let O = {o0,o1,...,oN-1} denote the objects of interest
and π(oi) denote the mapping of the group ID and object oi.
The GTMine algorithm generates the grouping result G and
the associated group movement patterns GT. Specifically,
G is composed of m disjoint groups of objects over O,
denoted by G = {g0,g1,...,gm-1}, where gi = { oj|π(oj) = i, oj ϵ
O}. The group movement patterns associated gi is denoted
by GTi, and GT = {GT0,GT1,...,GTm-1} denotes the group
movement patterns for the m groups. The GTMine
algorithm is comprised of four steps. First, we extract the
movement patterns of each object from the location
sequence. Second, we construct a similarity graph in which
similar objects are connected by an edge. Third, we extract
highly connected components to derive the group
information. Fourth, we construct a group PST for each
group in order to conserve the memory space. The above
steps extract the group information and object movement
patterns. In constructing Group Prediction Suffix tree step,
we retain the most representative PST of a group of objects
for storage efficiency.
4.4 The Cluster Ensemble (CE) Algorithm
In the previous section, each CH collects location data and
generates local group results with the proposed GTMine
algorithm. Since the objects may pass through only partial
sensor clusters and have different movement patterns in
different clusters, the local grouping results may be
inconsistent. For example, if objects in a sensor cluster
walk close with together across a canyon, it is reasonable
to consider them a group. In contrast, objects scattered in
grassland may not be identified as a group. Furthermore, in
the case where a group of objects moves across the margin

of a sensor cluster, it is difficult to find their group
relationships. Therefore, we propose the CE algorithm to
combine multiple local grouping results. The algorithm
solves the inconsistency problem and improves the
grouping quality. The ensemble problem involves finding
the partition of O that contains the most information about
the local grouping results. Let C denote the ensemble of the
local grouping results, represented as C = {G0,G1,...,Gk-1},
where k denotes the ensemble size, i.e., the total number of
CHs. we utilize NMI to evaluate the grouping quality. The
mutual information of Gi and Gj is a measure of the amount
of information shared by the two results

MI (Gi,Gj) = ∑ ∑ ܲଵ(ܽ, భ(,) భ() × భ() ,ೕିଵୀିଵୀ ݈݃ (ܾ

where ଵ(ܽ) denotes the probability function of Gi,
defined as

 = (ܽ)ଵ
|ೌ ||ை| ;

and ܲଵ(ܽ, ܾ) is the joint probability distribution function
of Gi and Gj, defined as

 ܲଵ(ܽ, ܾ) =
|ೌ ∩ ೕ್ ||ை| .

 For a probable ensembling result G, the summation of
NMIs of G and every Gi ϵ C represents the amount of
information that G contains with respect to C. Therefore,
the ensembling result G1 that contains the most information
about C is given by,

 G1 = arg max ∑ ,ܩ)ܫܯܰ ିଵୀ,(ܩ

 The algorithm leverages the information in C to
generate the ensembling result Gδ , and trades off the
grouping quality against the computation cost by adjusting
the partition parameter D, i.e., a set of thresholds with
values in the range [0,1]. A finer grained configuration of
D achieves a better grouping quality, but the penalty is a
higher computation cost. The proposed CE algorithm is
comprised of three steps. First, it utilizes the Jaccard
similarity coefficient to measure the similarity of each pair
of objects. Second, it partitions the objects for every δ ϵ D;
and third, it employs NMI to optimize the ensembling
result. In the following, we describe the three steps in
detail. The sink node uses the CE algorithm to combine the
local grouping results. It then assigns a global group ID to
each group and sends the group information to the CHs for
subsequent collection of the location data.

5. CONCLUSIONS
In this work, we exploit the characteristics of group
movements to discover the information about groups of
moving objects in an Object Tracking Sensor Network
(OTSN). In contrast to the centralized mining technique,
we mine the group information in a distributed manner. We
propose a novel distributed mining algorithm, which
consists of a local GTMine algorithm and a CE algorithm,
to discover group information. Our algorithm mines object
movement patterns as well as group information and the
estimated group dispersion radius. Our experimental results
show that the proposed mining technique achieves good
grouping quality. Prediction Suffix tree and VLHMM

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

524

models are very useful to predict the location sequence
much accurately. Minkowski distance which is also very
effective distance measure for movable objects because of
its high dimensionality supported feature.

ACKNOWLEDGEMENTS

We are greatly delighted to place my most profound
appreciation to Dr. K. Satyanarayana Chancellor of
K.L.University, Dr. K. Raja Sekhara Rao Principal, S.
Venkateswaralu Head of the department of CSE and Dr.
K. Subramanyam coordinator for M.Tech under their
guidance and encouragement and kindness in giving us the
opportunity to carry out the paper. Their pleasure nature,
directions, concerns towards us and their readiness to share
ideas enthused us and rejuvenated our efforts towards our
goal. We also thank the anonymous references of this paper
for their valuable comments.

REFERENCES

[1] G. Shannon, B. Page, K. Duffy, and R. Slotow, “African

Elephant Home Range and Habitat Selection in Pongola
Game Reserve, South Africa,” African Zoology, vol. 41 ,no.
1, pp. 37- 44, Apr. 2006.

[2] C. Roux and R.T.F. Bernard, “Home Range Size, Spatial
Distribution and Habitat Use of Elephants in Two Enclosed
Game Reserves in the Eastern Cape Province, South
 Africa,” African J. Ecology, vol. 47, no. 2, pp. 146-153,
June 2009.

[3]J.Yang and M. Hu, “Trajpattern: Mining Sequential Patterns
from Imprecise Trajectories of Mobile Objects,”
Proc. 10th Int’l Conf. Extending Database Technology, pp.
664-681, Mar.2006.

[4] M. Morzy, “Mining Frequent Trajectories of Moving Objects
for Location Prediction,” Proc.5th Int’l Conf. Machine
Learning and Mining in Pattern Recognition, pp. 667-680,
July 2007.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi,
“Trajectory Pattern Mining,” Proc. ACM SIGKDD, pp. 330-
339, 2007.

[6] V.S. Tseng and K.W. Lin, “Energy Efficient Strategies for
Object Tracking in sensor networks: A Data Mining
pproach,” J. Systems and Software, vol. 80, no. 10, pp.1678-
1698, 2007.

[7] L. Chen, M. Tamer O ¨ zsu, and V. Oria, “Robust and Fast
Similarity Search for Moving Object Trajectories,” Proc.
ACM SIGMOD, pp. 491-502, 2005.

[8] Y. Wang, E.-P. Lim, and S.-Y. Hwang, “Efficient Mining of
Group Patterns from User Movement Data,” Data
Knowledge Eng., vol. 57, no. 3, pp. 240-282, 2006.

[9] M.Nanni,D.Pedreschi, “Time-Focused Clustering of
Trajectories of Moving Objects,”J. Intelligent Info Systems,
vol. 27, no. 3, pp. 267-289, 2006.

[10] C.M.Sadler, M.Martonosi, “Data Compression Algorithms
for Energy-Constrained Devices in Delay Tolerant
Networks,” Proc. ACM Conf. Embedded Networked Sensor
Systems, Nov. 2006.

[11] http://www.defenders.org/wildlife_and_habitat/
Wildlife /elephant.php, 2010.
[12]E.Hartuv and R.Shamir, “A Clustering Algorithm Based on

the Graph Connectivity,” Information Processing Letters,
vol. 76, nos. 4-6, pp. 175-181, 2000.

[13] R.Agrawal and R.Srikant, “Mining Sequential Patterns,”
Proc. 11th Int’l Conf. Data Eng., pp. 3-14, 1995.

[14] J.Han,J.Pei, B.Mortazavi-Asl, Q.Chen, U. Dayal, and M.Hsu,
“Freespan: Frequent Pattern-Projected Sequential Pattern
Mining,” Proc. Sixth ACM SIGKDD, pp. 355-359, 2000.

 [15] J.Yang and M.Hu, “ Trajpattern: Mining Sequential
Patterns from Imprecise Trajectories of Mobile Objects,”
Proc. 10th Int’l Conf. Extending Database Technology, pp.
664-681, Mar. 2006.

 [16] M.-S. Chen, J.S. Park, and P.S. Yu, “Efficient Data Mining
for Path Traversal Patterns,” Knowledge and Data Eng., vol.
10, no. 2, pp. 209-221, 1998.

 [17] W.-C. Peng and M.-S. Chen, “Developing Data Allocation
Schemes by Incremental Mining of User Moving Patterns in
a Mobile Computing System,” IEEE Trans.Knowledge and
Data Eng., vol. 15, no. 1, pp. 70-85, Jan./Feb. 2003.

 [18] M.Morzy, “Prediction of Moving Object Location Based on
Frequent Trajectories,”Proc. 21st Int’l Symp. Computer and
Information Sciences, pp. 583-592, Nov. 2006.

[19] M. Morzy, “Mining Frequent Trajectories of Moving Objects
for Location Prediction,” Proc. Fifth Int’l Conf. Machine
Learning and Data Mining in Pattern Recognition,
pp. 667- 680, July 2007.

[20] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi,
“Trajectory Pattern Mining,”Proc.13th ACM SIGKDD, pp.
330-339, 2007.

[21] V.S. Tseng and K.W. Lin, “Energy Efficient Strategies for
Object Tracking in Sensor Networks: A Data Mining
Approach,” J. Systems and Software, vol. 80, no. 10, pp.
1678-1698, 2007.

[22] Y. Li, J. Han, and J. Yang, “Clustering Moving Objects,”
Proc. 10th ACM SIGKDD, pp.617-622, 2004.

[23] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory Clustering:
A Partition-and-Group Framework," Proc. ACM SIGMOD,
pp. 593- 604, 2007.

[24]Y. Wang, E.-P. Lim, and S.-Y. Hwang, “Efficient Mining of
Group Patterns from User Movement Data,” Data
Knowledge Eng., vol. 57, no. 3, pp. 240-282, 2006.

[25] M.Nanni and D.Pedreschi, “Time-Focused Clustering
Trajectories of Moving Objects,”J. Intelli gent Information
Systems, vol. 27, no. 3, pp. 267-289, 2006.

[26] L.Chen, M.Tamer O ¨ zsu, and V. Oria, “Robust and Fast
Similarity Search for Moving Object Trajectories,” Proc.
ACM SIGMOD, pp. 491-502, 2005.

[27] V.Guralnik and G.Karypis, “A Scalable Algorithm for
Clustering Sequential Data,” Proc.1st IEEE Int’l Conf.
Data Mining, pp. 179-186, 2001.

[28] J. Yang and W. Wang, “CLUSEQ: Efficient and Effective
Sequence Clustering,” Proc.19th Int’l Conf. Data Eng., pp.
101-112, Mar. 2003.

[29] A. Strehl and J. Ghosh, “Cluster Ensembles—A Knowledge
Reuse Framework for combining Partitionings,” Proc.
Conf. Artificial Intelligence, pp. 93-98, July 2002.

[30] H. Ayad, O.A. Basir, and M. Kamel, “A Probabilistic Model
Using Info Theoretic Measures for Cluster Ensembles,”
Proc. Fifth Int’l Workshop Multiple Classifier Systems, pp.
144-153, June 2004.

[31] A.L.N. Fred and A.K. Jain, “Combining Multiple Clusterings
Using Evidence Accumulation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 6, pp.835-
850, June 2005.

[32] X.Z. Fern and C.E. Brodley, “Random Projection for High
Dimensional Data Clustering: A Cluster Ensemble
Approach,” Proc. 20th Int’l Conf. Machine Learning, pp.
1186-1193, June 2003.

[33] H. Kargupta, W. Huang, K. Sivakumar, and E.L. Johnson,
“Distributed Clustering Using Collective Principal
Component Analysis,” Knowledge and Information System,
vol. 3, pp. 422-448, 2001.

[34] H.T. Kung and D. Vlah, “Efficient Location Tracking Using
Sensor Networks,” Proc. Conf. IEEE Wireless Comm. and
Networking, vol. 3, pp. 1954-1961, Mar. 2003.

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

525

[35] J. Tang, B. Hao, and A. Sen, “Relay Node Placement in
Large Scale Wireless Sensor Networks,” J. Computer
Comm., special issue on sensor networks, vol. 29, no. 4, pp.
 490-501, 2006.

[36] M. Younis and K. Akkaya, “Strategies and Techniques for
Node Placement in Wireless Sensor Networks: A
Survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621-655,
 2008.

[37] S. Pandey, S. Dong, P. Agrawal, and K. Sivalingam, “A
Hybrid Approach to Optimize Node Placements in
Hierarchical Heterogeneous Networks,” Proc. IEEE Conf.
Wireless Comm. and Networking Conf., pp. 3918-3923,
Mar. 2007.

[38] Stargate: A Platform X Project,
http://platformx.sourceforge.net, 2010.

[39] Mica2 Sensor Board, http://www.xbow.com, 2010.
[40] J.N. Al Karaki and A.E. Kamal, “Routing Techniques in

Wireless Sensor Networks: A Survey,” IEEE Wireless
Comm., vol. 11, no. 6, pp. 6-28, Dec. 2004.

[41] J.Hightower and G. Borriello,“Location Systems for
Ubiquitous Computing,” Computer, vol. 34, no. 8, pp. 57-66,
Aug. 2001.

[42] D. Li, K.D. Wong, Y.H. Hu, and A.M. Sayeed, “Detection,
Classification, and Tracking of targets,” IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 17-30, Mar. 2002.

[43] Hsiao-Ping Tsai , De-Nian Yang, Ming-Syan Chen,
“Exploring Application-Level Semantics for Data
Compression”, IEEE Knowledge and data engineering,
vol.23, no.1, Jan. 2011.

Vijayasaradhi Thommandru et al IJCSET |September 2011 | Vol 1, Issue 8, 519-526

526

