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Abstract  —  Many natural phenomena show that  objects 
often exhibit some degree of regularity in their movements. 
However, previous works focus on finding the movement 
patterns of each single object or all objects. In this paper, we 
propose an efficient distributed mining algorithm to jointly 
identify a group of moving objects and discover their 
movement patterns in wireless sensor networks. As the 
movements of an object are regular, the object’s next location 
can be predicted based on its preceding locations. We  model 
the regularity by using the Variable Length Hidden Markov 
Model (VLHMM). If a pattern occurs more frequently, it 
carries more information about the movements of an object. 
To find out these information patterns, we first define the 
pattern as a significant pattern by adapting a Prediction 
Suffix Tree (PST) with improved smoothening factor. Our 
distributed mining algorithm comprises of Group Trajectory 
Mine (GTM) and Cluster Ensemble (CE) algorithms. In 
GTM, we propose a new similarity measure known as 
minkowski, which is used to compute the similarity of moving 
objects. In CE phase, our algorithm combines the multiple 
local grouping results which come from the GTM algorithm. 
We further leverage the mining results to track moving 
objects efficiently. 
Keywords --- Distributed Clustering, Similarity measure, 
Object Tracking, WSN, Prediction Suffix Tree 
 

1. INTRODUCTION 
       Recent advances in wireless sensors and mobile 
technologies have to equip their devices with positioning 
sensors that utilize the global positioning system (GPS). 
Accurate positioning of mobile devices makes the way for 
the deployment of location based services and applications 
like object tracking, environmental monitoring etc. These 
applications flood in with large amounts of moving object 
data. This results in transmission and storage challenges in 
WSN's, Since it has constrained resources such as on-
board, non - refreshable battery power, computation 
capability and storage. 
        Object tracking is an important application of WSN's. 
Tracking consists of deleting and monitoring locations of 
real world objects, possibly using several types of sensing 
such as acoustic, seismic, electromagnetic etc. Object 
tracking sensor networks have two critical operations. 
First, monitoring: sensor nodes are required to detect and 
track the movement states of mobile objects. Second, 
reporting : the nodes that sense the objects need to report 
their discoveries to the applications. These two operations 
are interleaved during the entire object tracking process.  
        In object tracking applications many natural 
phenomena shows that objects often exhibit some degree of 

regularity in their movements. The movements of creatures 
are temporally and spatially correlated. Biologists have 
found that many creatures such as elephants, zebra, whales 
and birds form large social groups when migrating to find 
food or for breeding or wintering. These characteristics 
indicate that the trajectory data of multiple objects may be 
correlated for biological applications. More over some 
research domains, such as the study of animals behavior 
and wild life migration[1], [2], are more concerned with 
the movement patterns of group of animals, not 
individuals; hence, tracking each object is unnecessary in 
this case. This raises a new challenge of finding moving 
animals belonging to the same group and identifying their 
aggregated group movement patterns. Therefore, under the 
assumption that objects with similar movement patterns are 
regarded as a group, we define the moving object 
clustering problem as given the movement trajectories of 
objects, partitioning the objects into non overlapped groups 
such that the number of groups is minimized. Since there 
are inherent variations in the number of groups and their 
sizes (e.g., elephant herds may contain 8-100 individuals, 
depending on the environment and family size [11]), it is 
difficult to predetermine these two parameters. Therefore, 
we use the HCS algorithm [12] to cluster objects efficiently 
without pre specifying the number of groups or their sizes.   
         Discovering the group movement patterns is more 
difficult than finding the patterns of a single object or all 
objects, because we need to jointly identify a group of 
objects and discover their aggregated group movement 
patterns. On the one hand, the temporal-and-spatial 
correlations in the movements of moving objects are 
modeled as sequential patterns in data mining to discover 
the frequent movement patterns [3], [4], [5], [6]. On the 
other hand, previous works, such as [7], [8], [9], measure 
the similarity among these entire trajectory sequences to 
group moving objects.  
         In this paper, we first introduce our distributed 
mining algorithm to approach the moving object clustering 
problem and discover group movement patterns. Previous 
works focus on finding the significant patterns by using the 
prediction suffix trees (PSTs). But it has a  smoothening 
problem. To overcome this problem, we are using 
improved smoothening factor in constructing PSTs. Our 
distributed mining algorithm comprises a Group Trajectory 
Mine (GTM) and a Cluster Ensemble (CE) algorithms. The 
GTM algorithm discovers the local group movement 
patterns by using a novel similarity measure. In previous 
paper, to measure the distance between significant patterns, 
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Euclidean distance is used. But this is not appropriate when 
objects have high-dimensions. So, we propose a similarity 
measure by using the minkowski distance. CE algorithm 
combines the local grouping results to remove 
inconsistency and improve the grouping quality by using 
the Jaccard coefficient. In contrast to approaches that 
perform clustering on entire trajectories at a central server, 
the proposed algorithm discovers the local group 
relationship in a distributed manner on sensor nodes  
        The contribution of this paper is threefold. First, we 
propose a prediction suffix tree with improved 
smoothening factor to find out the significant movement 
pattern. Second, we propose a new pair wise measure 
distance based on pattern similarity. To compute the 
similarity of moving objects we use minkowski distance. 
Third, we use the discovered information to track moving 
objects efficiently. The remainder of this paper is 
organized as follows: In Section 2, we review related 
works. Section 3, provide an overview of our network 
model and location model. In Section 4, we describe the 
design of our Group trajectory mining algorithm. Section 5, 
we summarize our conclusions. 
 

2.  RELATED WORK 
2.1  Movement Pattern Mining 
       The temporal-and-spatial correlations and the 
regularity in the trajectory data sets of moving objects are 
often modeled as sequential patterns for use in data mining. 
Agrawal and Srikant [13] first defined the sequential 
pattern mining problem and proposed an Apriori-like 
algorithm to mine frequent sequential patterns. Han et al. 
proposed Free Span [14], which is an FP-growth-based 
algorithm that addresses the sequential pattern mining 
problem by considering the pattern-projection method. For 
handling the uncertainty in trajectories of mobile objects, 
Yang and Hu [15] developed a new match measure and 
proposed Trajpattern to mine sequential patterns from 
imprecise trajectories. Moreover, a number of research 
works have been elaborated upon mining traversal patterns 
for various applications. For example, Chen et al. [16] 
proposed the FS and SS algorithms for mining path 
traversal patterns in a Web environment while Peng and 
Chen [17] proposed an incremental algorithm to mine user 
moving patterns for data allocation in a mobile computing 
system. However, sequential patterns or path traversal 
patterns do not provide sufficient information for location 
prediction or clustering. To discover significant patterns for 
location prediction, Morzy proposed Apriori-Traj [18] and 
Traj-Prefix Span [19] to mine frequent trajectories, where 
consecutive items of a frequent trajectory are also adjacent 
in the original trajectory data. Meanwhile, the approach in 
[20] extracts T-patterns from spatial temporal data sets to 
provide concise descriptions of frequent movements. Tseng 
and Lin [21] proposed the TMP-Mine algorithm for 
discovering the temporal movement patterns of objects.  
2.2 Trajectory Clustering 
      Recently, clustering based on objects’ movement 
behavior has attracted more attention. For example, Li et 
al. [22] employ Moving Micro clusters (MMC) to discover 
and maintain a cluster of moving objects online. 
Meanwhile, Lee et al. [23] proposed trajectory clustering to 
discover popular movement paths. Clustering similar 
trajectory sequences to discover group relationships is 

closely related to our problem. Wang et al. [24] transform 
the location sequences into a transaction-like data on users 
and based on which to obtain a valid group. However, the 
proposed AGP and VG-growth algorithms are Apriori-like 
or FP-growth based algorithms that suffer from high 
computing cost and memory demand. Nanni and Pedreschi 
[25] apply a density-based clustering algorithm to the 
trajectory clustering problem based on the average 
euclidean distance of two trajectories. However, the above 
works that discover group information based on the 
proportion of the time a group of users stay close together 
or the average euclidean distance of the entire trajectories 
may not reveal the local group relationships, which are 
required for many applications. 
2.3  Similarity Measure 
       Identifying the similarity (or distance) between two 
trajectories is essential for clustering. Computing the 
average euclidean distance of two geometric trajectories is 
a simple and useful approach. Nevertheless, the geometric 
coordinates are expensive and not always available. Other 
approaches, such as EDR, LCSS, and DTW, are widely 
used to compute the similarity of symbolic sequences [26]. 
However, the above dynamic programming approaches 
suffer from scalability problem [27]. Therefore, 
approximation or summarization techniques are used to 
represent original data for providing scalability. However, 
when projecting each data sequence into a vector space of 
sequential patterns, the importance of a sequential pattern 
regarding to each data sequence is not mentioned. In 
addition, Yang and Wang [28] employ a probabilistic 
suffix tree to learn the structural features of sequences and 
proposed a new similarity measure which computes the 
similarity of a probabilistic suffix tree and a sequence. 
Their clustering algorithm iteratively identifies a sequence 
to a cluster and adjusts the representative probabilistic 
suffix tree for each cluster. However, the generated clusters 
may overlap which differentiates their objective from ours.  
2.4  Distributed Clustering 
       Distributed clustering is an important research topic. 
Most of the approaches proposed in the literature focus on 
seeking a combination of multiple clustering results to 
achieve better clustering quality, stability, and scalability. 
For example, Strehl and Ghosh [29] introduced and 
formulated the clustering ensemble problem to a 
hypergraph partitioning problem, and proposed CSPA, 
HGPA, and MCLA to compute the best K-partition of the 
graph. Ayad et al. [30] presented a probabilistic model to 
combine cluster ensembles by utilizing information 
theoretic measures. Fred and Jain [31] combine multiple 
runs of the K-means algorithm with random initializations 
and random numbers to obtain the final consensus 
partition. Fern and Brodley [32] apply random projection 
to the high dimensional data and cluster the reduced data 
by using EM for a single run of clustering. The Collective 
PCA technique [33] proposed by Kargupta et al. is applied 
to reduce the vector dimension for distributed clustering of 
high dimensional heterogeneous data. The data types of the 
above works [30], [31], [32], [33], [34] are most integer 
vector or categorical data, and their related issues are 
thereby different from ours. In addition, previous works 
that require a predetermined k in their clustering or 
Ensemble algorithms are not suitable for our applications. 
Besides, although the local grouping results in a vector of 
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integers, each of which represents the mapping between an 
object and its belonging group, dimension reduction like 
Collective PCA [33] is unnecessary in our case. 
 

3.  PRELIMINARIES 
3.1  Hierarchical Object Tracking Sensor Network         
        Many researchers believe that a hierarchical 
architecture provides better coverage and scalability, and 
also extends the network lifetime of WSNs [35], [36]. In a 
hierarchical WSN, such as that proposed in [37], the 
energy, computing, and storage capacity of sensors are 
heterogeneous. A high end sophisticated node, such as Intel 
Stargate [38], is assigned as a CH to perform high 
complexity tasks; while a resource constrained node, such 
as Mica2 mote [39], performs the sensing and low 
complexity tasks. In this work, we adopt a hierarchical and 
cluster-based network structure with K layers. As shown in 
Fig. 1a, the nodes are clustered in each level, and each 
cluster is a mesh network of fixed size, i.e., each cluster is 
a set of n x n sensors. We assume that each sensor in a 
cluster has a locally unique ID, and denote the sensor IDs 
by an alphabet  Ʃ . Fig. 1b shows an example of a two-
layer network structure, where each cluster contains 16 
nodes whose IDs are identified by  Ʃ =    { a, b,......, p }.  
         The sensor nodes at each level are divided into some 
equal number of clusters and we assume that each cluster 
in that level having a individual cluster heads called Virtual 
Center Heads ( VCHs ). VCHs acts like a bridge between 
sensor nodes and Cluster Head ( CH ). All the VCHs at that 
level together form a global cluster head. These VCHs will 
collect the location data from the respective clusters.  
VCHs are also used to combined and transmit the location 
data of the object to its Global Cluster Head  effectively. 
From the Global Cluster Head the data will be transmit to 
the Cluster head of the next level. Here we are considering 
the transmission traffic as a effective parameter and reduce 
it by using these VCHs.  First the object location data will 
be collected by the sensors and here for 16 sensor nodes , 4 
VCHs are used at each level to transmit the location data to 
its Cluster Head independently. By introducing this 
concept we will able to reduce the so much of network 
traffic in terms of packets and reduce the work load at the 
Cluster Head ( CH ). Whenever the work load of Cluster 
Head was reduced then automatically the data acquisition 
speed at the sink also increased. By using these VCHs 
overlapping overhead of location data also minimized at 
the time of  transmission. 
        In this work, an object is defined as a target, such as 
an animal or a bird, that is recognizable and trackable by 
the tracking network. A cluster of sensors communicate 
with each other by using multi hop routing, and wake up on 
their duty cycles to carry out a given task [40]. They 
collaboratively gather or relay remote information to a base 
station called a sink. Take the tracking application for 
example. When a sensor wakes up and detects an object of 
interest, it transmits the location data of the object to its CH 
and then enters the sleep mode. The CH aggregates the 
data and forwards it to the CH of the upper layer. The 
process is repeated until the sink node receives the location 
data. The data flow is as shown in Fig. 1 [43]. When a task 
of discovering the group relationships of objects is 
assigned, it is unnecessary to transmit all the location data 
to the sink for post processing. In our design, CHs collect 

the location data for a period and generate location 
sequence data sets locally. Then, based on the data sets, our 
mining algorithm tries to discover the group relationships 
about the objects of interest. Geometric models and 
symbolic models are widely used to represent the location 
of objects [41]. A geometric location denotes precise 2-
dimension or 3-dimension coordinates; while a symbolic 
location represents an area, such as the sensing area of a 
sensor or a group of sensors, defined by the applications. 
Since the accurate geometric location is not easy to obtain, 
in this work, we employ a symbolic model and take the 
sensors’ IDs as the locations of an object of interest. 
Sensors are closely deployed to ensure complete coverage 
of the monitored area, but this causes consistency and 
redundancy problems. Techniques like the Received Signal 
Strength (RSS) [42] simply estimate an object’s location 
based on the ID of the sensor with the strongest signal and 
eliminate unnecessary transmissions. The trajectory of a 
moving object is thus model as an ordered sequence of 
sensor IDs, i.e., a location sequence denoted by s = 
σ0,σ1....σl-1, where σi ϵ Ʃ and l is the sequence length. 

 
Fig. 1. The hierarchical and cluster-based network structure 
and the data flow of an update-based tracking network.   
 
 
3.2  Variable Length Hidden Markov Model 
       (VLHMM) and  Prediction Suffix Tree (PST) 
     If the movements of an object are regular, the object’s 
next location can be predicted based on its preceding 
locations. We model the regularity by using the Variable 
Length Hidden Markov Model (VLHMM). The VLHMM 
is superior in its efficiency and accuracy of modeling 
multivariate time-series data with highly-varied dynamics. 
Our motivation of developing VLHMM comes from the 
following observations: (1) although the first-order HMM 
(HMM) is efficient in learning, it is inaccurate in modeling; 
(2) the fixed-length high-order HMM (n-HMM) is accurate 
in modeling but, because of its huge number of parameters, 
is not efficient; (3) Various variants to n-HMM, including 
the Mixture Transition Distribution (MTD), introduces 
mathematical constraints to simplify n-HMM. Although 
the simplification reduces model complexity, it also 
reduces the generality and accuracy of modeling. Unlike 
these variants that compromise between HMM and n-
HMM, VLHMM is both accurate and efficient.  
       Variable Length Markov Model (VLMM) is an 
"observable" Markov model and can only model sequences 
of discrete values; whereas VLHMM is a "hidden" model 
and can model sequences of discrete/continuous and 
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scalar/vector values. Learning VLMM only needs to 
optimize the Minimum-Entropy criterion, whereas learning 
VLHMM needs to optimize both the Minimum-Entropy 
and the Maximum-Likelihood criteria. In some papers, 
VLMM was used to learn a sequence of continuous/vector 
values. This is done by (1) discarding the order of the 
values in the sequence, (2) clustering the values into a 
finite number of clusters, (3) substituting each value of the 
sequence by its cluster index, and (4) learning VLMM from 
the sequence of cluster indices. However, this method is far 
from optimal, because the error introduced in the clustering 
step (usually called quantization or discretization) caused 
by discarding the order information may be very large and 
is out of control. In fact, learning a hidden Markovian 
model (HMM, n-HMM, or VLHMM) is itself a clustering 
process, where each cluster is represented by an output 
probability distribution function. Due to these advantages,  
a wider variety of patterns can be mined from VLHMM 
than from other models.         
       When a pattern “s” occurs more frequently, it carries 
more information about the movements of the object and is 
thus more desirable for the purpose of prediction. To find 
the informative patterns, we first define a pattern as a 
significant movement pattern if its occurrence probability 
is above a minimal threshold. To learn the significant 
movement patterns, we adapt Prediction Suffix Tree (PST). 
Previous works focus on finding the significant patterns by 
using the probability suffix trees(PSTs). PST provides very 
simple solution to the problem, probability smoothening. It 
has some drawbacks. First, the same constant value γmin is 
added to every probability, whatever the observed 
frequency and the probability of the event are. Second, the 
same floor probability γmin is assigned to all unseen events, 
whatever the suffix is. To overcome these drawbacks, we 
propose PST with improved smoothening factor known as 
Kneser-Nay-back-off smoothing. Kneser and Ney showed 
that using the back-off distribution even if the main 
distribution is not null leads to a better model. We then 
have: 

P(σ|s) =  ൝ (௦,ఙ)ିௗ∑ (௦,ఙ)ࣕ࣌Ʃ ,ݏ)ߚ(ݏ)ଵߙ + ,ݏ)ܿ ݂݅     (ߪ (ߪ > ,ݏ)ߚ(ݏ)ଵߙ 0 ݁ݏ݅ݓݎℎ݁ݐ                                  (ߪ  

             Where ߙଵ(ݏ) is a normalization factor. 
       The PST building algorithm extracts significant 
patterns from a sequence (or a dataset) and prunes 
unnecessary nodes during tree construction, and then 
generates a PST.  A PST over Σ is a non-empty tree, in 
which nodes vary in degree between zero and |Σ|. Each 
edge in the tree is labeled by a single symbol of  Σ such 
that no symbol can be represented by more than one edge 
branching out from any single node. Each node in the tree 
is labeled by a string s, which is a sequence generated by 
walking up the tree from that node to the root. In addition, 
each node also contains the conditional empirical 
probabilities, i.e., P (σ | s), for every σ ε Σ. Note that the 
maximal memory length (or maximum height) of a PST is 
specified by L max ; and the criteria for the PST building 
algorithm to create a node of a sequence s are as follows: 
1) The occurrence probability of s must be above the 
minimal support P min ; 2) the transition behavior P (σ | s) 
must differ significantly from that of the parent. 
       Fig. 2 shows the PST_build algorithm. The input of the 
algorithm includes the PST parameters (Pmin, α, γmin, r, 

Lmax) and a location sequence S;  Pmin is the minimal 
support of patterns; α is a parameter that together with the 
smoothing probability defines the significance threshold; 
γmin is the smoothing probability; r is a measure of the 
difference between the conditional probability of the 
candidate and its father node; and Lmax is the maximal 
memory length (maximal height of the tree). The output of 
the PST_build algorithm is a PST T that contains the 
significant patterns in S. The algorithm starts by initializing 
T and then computes the candidate patterns with Length 1  
(Lines 3-5), where getP(σ,S) is a function that returns P(σ) 
based on S. As shown in Lines 10-11, the algorithm checks 
whether each candidate is qualified to be a node in the tree. 
If the candidate s is qualified, a node associated with s and 
the nodes on the path to the root node are added to the PST 
(Lines 12-16). Next, the algorithm extends the candidates, 
as shown in Lines (18-20), Finally, it smoothens the 
conditional probabilities of all nodes in T to avoid zero 
conditional empirical probabilities      ( Lines 22-24 ), 
where ܿ(ݏ,  is the number of times σ was seen after the (ߪ
suffix s and ݀ is the discount parameter, which may 
depend on ܿ(ݏ, ,ݏ)ߚ is a  normalization factor and (ݏ)ଵߙ .(ߪ  is the back-off distribution. A node labeled with a (ߪ
sequence s is a significant pattern of  T, denoted by s ε T. 
 
Algorithm: PST_build 
Input: Pmin, α, γmin, r, Lmax, Σ, S=s0,s1,….sn-1 

Output: T 
0. /* Initialization */ 
1. T = node (root, S) 
2. X = Ǿ 
3. for each σ ε Σ 
4.     if get P(σ, S) ≥ Pmin then 
5.         add σ to X 
6. /* Building the PST skeleton */ 
7. while X ≠ Ǿ 
8.    for each s ε X 
9.      remove s from X 
10. if exists σ є Σ and getCP(σ, s, S) ≥ (1+α)γmin and 
11.    getCP(σ,s,S1)     >r     getCP(σ,s,S1)    >1/r   

getCP(σ,suf(s),S)        getCP(σ,suf(s),S) 
then           

12.  add node(s, S)to T 
13.  S1=S 
14.  while exists suf (S1) 
15.    add node(suf(S1),S) to T 
16.    S1= suf(S1) 
17.   If |S|<Lmax then  
18.     for each  σ є Σ 
19.       If get P(σ s, S)≥ Pmin then 
20.         add σ s to X 
21. /* smoothing the conditional probabilities*/ 
22.   for each node nd in T 
23.     for each σ є Σ 
24. nd.P(σ|s)=  ൝ (௦,ఙ)ିௗ∑ (௦,ఙ)ࣕ࣌Ʃ + ,ݏ)ߚ(ݏ)ଵߙ  ,ݏ)ܿ ݂݅     (ߪ (ߪ > ,ݏ)ߚ(ݏ)ଵߙ 0  ݁ݏ݅ݓݎℎ݁ݐ                                  (ߪ

25.   return T 
         
  
  Fig.2. The PST_build algorithm. 
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PST is useful and efficient in predicting the next item of a 
sequence. The algorithm’s Computational overhead is 
limited by the height of a PST so that it is suitable for 
sensor nodes. PST is frequently used in predicting the 
occurrence probability of a given sequence, which provides 
us important information in similarity comparison. The 
occurrence probability of a sequence s regarding to a PST 
T, denoted by PT(s) , is the prediction of the occurrence 
probability of s based on T. For example, the occurrence 
probability PT (“avsno”) is computed as follows: 

 
PT(“avsno”) = P(a) P(v/a) P(s/av) P(n/avs) P(o/avsn) 

 
 

         = φεa φ εavφ εavs φεavsn φεavsno 

 
 

                      = 0.67 X 0.5 X 1 X 1 X 1 = 0.33 
 
 

4.  DISCOVERY OF GROUP MOVEMENT     
PATTERNS 

 
4.1  Design of the Distributed Trajectory Mining                                               
Algorithm 
      In this work, we model the movement of an object by a 
VLHMM, and use a PST to mine the significant movement 
patterns. A set of moving objects is regarded as belonging 
to the same group if they share similar movement patterns. 
In this section, we first propose a new similarity measure to 
define the pair wise similarity of moving objects. The 
advantages of the new proposed similarity measure simp 
include its efficiency and its accuracy. First, simp compares 
the similarity of two objects based on their significant 
movement patterns instead of their entire location 
sequences. Thus, simp can provide efficiency for the 
applications with evolving and evolutionary similarity 
relationships. Second, it considers the importance of each 
movement pattern regarding to each individual object so 
that it achieves better accuracy in similarity comparison. 
With the definition of simp, two objects are similar if their 
similarity score is above a minimal threshold. A set of 
objects is regarded as a group if each object is similar to at 
least half the members of the same group. 
          To tackle the problem of discovering groups of 
moving objects, we propose a distributed mining algorithm 
comprised of a GTMine algorithm and a CE algorithm as 
shown in Fig. 3. The GTMine algorithm uses a PST to 
generate the significant movement patterns and computes 
the pair wise similarity of moving objects by using simp. It 
utilizes the HCS algorithm to cluster the moving objects 
into non overlapped groups. The sink applies the CE 
algorithm to combine the local grouping results. The CE 
algorithm utilizes the Jaccard similarity coefficient to 
measure the similarity between a pair of objects, and 
normalized mutual information (NMI) to derive the final 
ensembling result Gδ

1 .  
At the local end, CHi performs the GTMine algorithm to 
generate local grouping result Gi while the sink performs 
the Cluster Ensemble algorithm to combine the local 
grouping results into a consensus final result Gδ

1. 
 

 
Fig. 3. The framework of our distributed mining   

algorithm: 
 

4.2  Similarity Measurement Using Minkowski   
      In this work, we use a PST to mine significant 
movement patterns of an object, where a significant 
movement pattern is a subsequence with occurrence 
probability higher than a minimal threshold. Each node of a 
PST represents a significant movement pattern and carries 
its conditional probabilities, and all nodes of a PST provide 
the precise information about the predicted occurrence 
probability of a given pattern. To provide better 
discrimination accuracy, we propose a new similarity 
measure simp that adequately and skillfully utilizes the 
information carried by PSTs to measure the similarity of 
two objects. The design concepts of simp are simple and 
useful. The importance of a pattern s is modeled by using 
the predicted occurrence probability, i.e., PT (S),while the 
difference of a pattern is defined over all of the 
dimensions, i.e., PT (σ | s) . Based on the two concepts, we 
define the distance a pattern 's' associated with two objects 
oi and oj as  
(࢙)ࢊ  =  ඥ∑ Ʃࣕ࣌) (࢙࣌)ࢀࡼ −   ((࢙࣌)ࢀࡼ

  --------   (1) 
then i.e., ඨ Ʃࣕ࣌) (࢙)ࢀࡼ  × (࢙|࣌)ࢀࡼ − (࢙)ࢀࡼ   ×  ((࢙|࣌)ࢀࡼ

 

                                              

 
Fig. 4. The maximal value of  ƩsϵS1 d(S) of the two PSTs is 

6 + √2 
 

        where Ti and Tj are their respective PSTs. d(s) is the 
minkowski distance of products of the importance and 
difference over 'Ʃ' related to oi and oj. Note that since the 
similarity of two objects is symmetric in our applications,a 
symmetric measure, such as minkowski distance, is more 
desirable. Furthermore, for a pattern s ϵ Ti, PT

i (s) is a 
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significant value because the occurrence probability of 's' is 
higher than the minimal support Pmin. If oi and oj share the 
pattern 's', we have s ϵ Ti and s ϵ Tj, respectively, such that 
PTi (s) and PTj (s) are non-negligible and meaningful in the 
similarity comparison. Thus, we define the similarity score 
of oi and oj by using all of their significant movement 
patterns as follows: 
 

Simp(Oi,Oj)= - log 
∑ ට∑ Ʃࣕ࣌)   ೞചೄ((࢙࣌ )ࢀࡼି(࢙࣌)ࢀࡼ ଶ ೌೣ ା √ଶ   ---  (2) 

 
       where S1 denotes the union of significant movement 
patterns (nodes) of both objects (trees). We sum d(s) for all 
s ϵ S1 as the distance between two PSTs and normalize it 
by its maximal value, i.e., 2Lmax + √2. For example, the 
PSTs shown in Fig. 4 are built for two sequences "aa...a" 
and "bb...b" with α = 0, r = 1, and Lmax = 3. The distance 
between two PSTs is 6 + √2, where  S1 = {"a", "aa", "aaa", 
"b", "bb", "bbb"}. Thereafter, we take the negative log of 
the distance between two PSTs as the similarity score such 
that a larger value of the similarity score implies a stronger 
similar relationship, and vice versa. The worst-case 
complexity of computing simp is O(Lmax X |Ʃ| X  |S1|). 
Therefore, the complexity of building a PST and scoring 
the similarity between two PSTs is O(Lmax X |Ʃ| X  |S1| + l), 
where l is the sequence length. 
4.3  Group Trajectory Mine (GTM) Algorithm  
We now describe the GTMine algorithm, which identifies 
groups of objects and determines their movement  patterns. 
The minimal similarity threshold (simmin) is the lower limit 
of the similarity between two objects belonging to the same 
group. Let O = {o0,o1,...,oN-1} denote the objects of interest 
and π(oi) denote the mapping of the group ID and object oi. 
The GTMine algorithm generates the grouping result G and 
the associated group movement patterns GT. Specifically, 
G is composed of m disjoint groups of objects over O, 
denoted by G = {g0,g1,...,gm-1}, where gi = { oj|π(oj) = i, oj ϵ 
O}. The group movement patterns associated gi is denoted 
by GTi, and GT = {GT0,GT1,...,GTm-1} denotes the group 
movement patterns for the m groups. The GTMine 
algorithm is comprised of four steps. First, we extract the 
movement patterns of each object from the location 
sequence. Second, we construct a similarity graph in which 
similar objects are connected by an edge. Third, we extract 
highly connected components to derive the group 
information. Fourth, we construct a group PST for each 
group in order to conserve the memory space. The above 
steps extract the group information and object movement 
patterns. In constructing Group Prediction Suffix tree step, 
we retain the most representative PST of a group of objects 
for storage efficiency. 
4.4   The Cluster Ensemble (CE) Algorithm 
In the previous section, each CH collects location data and 
generates local group results with the proposed GTMine 
algorithm. Since the objects may pass through only partial 
sensor clusters and have different movement patterns in 
different clusters, the local grouping results may be 
inconsistent. For example, if objects in a sensor cluster 
walk close with together across a canyon, it is reasonable 
to consider them a group. In contrast, objects scattered in 
grassland may not be identified as a group. Furthermore, in 
the case where a group of objects moves across the margin 

of a sensor cluster, it is difficult to find their group 
relationships. Therefore, we propose the CE algorithm to 
combine multiple local grouping results. The algorithm 
solves the inconsistency problem and improves the 
grouping quality.  The ensemble problem involves finding 
the partition of O that contains the most information about 
the local grouping results. Let C denote the ensemble of the 
local grouping results, represented as C = {G0,G1,...,Gk-1}, 
where k denotes the ensemble size, i.e., the total number of 
CHs. we utilize NMI to evaluate the grouping quality. The 
mutual information of Gi and Gj is a measure of the amount 
of information shared by the two results    
 

MI (Gi,Gj) = ∑ ∑ ܲଵ(ܽ, భ(,) భ() × భ()  ,ೕିଵୀିଵୀ ݈݃ (ܾ  

 
where  ଵ(ܽ) denotes the probability function of Gi, 
defined as  

 = (ܽ)ଵ                                
|ೌ ||ை|  ; 

and  ܲଵ(ܽ, ܾ)  is the joint probability distribution function 
of Gi and Gj, defined as 
                                

                           ܲଵ(ܽ, ܾ) = 
|ೌ  ∩ ೕ್ ||ை|  . 

         For a probable ensembling result G, the summation of 
NMIs of G and every Gi ϵ C represents the amount of 
information that G contains with respect to C. Therefore, 
the ensembling result G1 that contains the most information 
about C is given by, 
 
                  G1 = arg max ∑ ,ܩ)ܫܯܰ ିଵୀ,(ܩ  
 
          The algorithm leverages the information in C to 
generate the ensembling result Gδ , and trades off the 
grouping quality against the computation cost by adjusting 
the partition parameter D, i.e., a set of thresholds with 
values in the range [0,1]. A finer grained configuration of 
D achieves a better grouping quality, but the penalty is a 
higher computation cost. The proposed CE algorithm is 
comprised of three steps. First, it utilizes the Jaccard 
similarity coefficient to measure the similarity of each pair 
of objects. Second, it partitions the objects for every δ ϵ D; 
and third, it employs NMI to optimize the ensembling 
result. In the following, we describe the three steps in 
detail. The sink node uses the CE algorithm to combine the 
local grouping results. It then assigns a global group ID to 
each group and sends the group information to the CHs for 
subsequent collection of the location data. 
 

5.  CONCLUSIONS 
In this work, we exploit the characteristics of group 
movements to discover the information about groups of 
moving objects in an Object Tracking Sensor Network 
(OTSN). In contrast to the centralized mining technique, 
we mine the group information in a distributed manner. We 
propose a novel distributed mining algorithm, which 
consists of a local GTMine algorithm and a CE algorithm, 
to discover group information. Our algorithm mines object 
movement patterns as well as group information and the 
estimated group dispersion radius. Our experimental results 
show that the proposed mining technique achieves good 
grouping quality. Prediction Suffix tree and VLHMM 
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models are very useful to predict the location sequence 
much accurately. Minkowski distance which is also very 
effective distance measure for movable objects because of  
its high dimensionality supported feature.     
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