
Evaluated and Suggested Range aggregate query
approximation on data cubes in P2P networks

K.Seetha Devi, CH.V. Phani Krishna, P.Venkateswara Rao

CSE Department, KL University,Guntur dt., India.

Abstract- Individual computers provide opportunities for
tremendous productivity gains, but they become many
times more powerful when they're connected to one
another forming a peer to peer network that gives them the
ability to share data and processing resources. This paper
presents data exchange between peers occurs when one of
them, in the role of a local peer, needs data available in
other nodes, denoted the acquaintances of the local peer
and also an adaptive dual-phase approach based on
random walks of the P2P graph for efficiently serving
range aggregate queries on data cubes in a peer to peer
system. The problem of answering large-scale ad hoc
analysis queries, for example, range aggregate queries on
data cubes possesses unique challenges. Exact solutions can
be time consuming and difficult to implement, given the
distributed and dynamic nature of P2P data cubes. In this
paper, we use an I/O-efficient technique based up on a
multi resolution wavelet decomposition that yields excellent
approximations for range aggregate queries with limited
space usage and computational cost.

Keywords‐ OLAP, data cubes, aggregate queries, wavelet
decomposition, P2P graph

I. INTRODUCTION
From the past few years, there is an increase in the use of
complex databases for data analysis by various scientific
and business organizations. Organizations frequently
expand, adding geographically distributed branches and
acquiring subsidiaries. As a result, a single centralized
data warehouse may be too expensive or difficult to
construct. Instead, the enterprise may temporarily or
permanently decide to utilize a number of smaller,
remotely located data warehouses. The on-line analytical
processing (OLAP) or decision support applications,
analyze the data in a data warehouse to glean interesting
trend information. OLAP systems typically organize the
data in the form of a data cube, a hierarchy of multi-
dimensional sub cubes, where each sub-cube describes
the distribution of data in a set of dimensions, and
materialize part or the entire data cube. For example,
retailers use OLAP systems to analyze vast amounts of
sales data in order to evaluate new marketing strategies.
It is well known that these applications access large
amounts of data and involve complex aggregate queries.
At the same time, they require very quick responses. The
dynamics of large-scale distributed systems are often
significantly different. For example, in P2P networks,
individual machines are often under the control of a
large number of heterogeneous users who may join or
leave the network at any time [2] Peer to peer systems
have many interesting technical aspects like
decentralized control, self organization, adaptation and
scalability. Peer-to-peer systems can be characterized as
distributed systems in which all nodes have identical

capabilities and responsibilities and all communication is
symmetric [3] three aspects of a P2P system: P2P
network topology, query distribution and replication. By
network topology, we mean the graph formed by the P2P
overlay network; each P2P member has a certain number
of neighbors" and the set of neighbor connections forms
the P2P overlay network [7].
A. Goal of the Paper
We aim at significantly reducing the load for answering
range aggregate queries on data cubes in peer-to-peer
networks. Specifically, we concentrate on I/O-efficient
technique based upon a multi resolution wavelet
decomposition that yields a compact and accurate
representation of the data cube built on the logarithms of
the partial sums of the raw data values. The compact
cube after normalization and thresholding to reduce
storage cost provides fast and accurate answers to on-
line range aggregate queries.
An approach with these characteristics can be useful in
various contexts. For example, consider a worldwide
company on an enterprise network or a worldwide
virtual organization with users interested in geographical
data. In both cases the users would not be interested in
wasting time in performing data analysis related
operations. Hence we introduce wavelets based
approximate answering to any range aggregate query
initiated by any peer in the network.
B. Our Approach
We briefly describe the framework of our approach. Our
approach has two major phases. In the first phase, we
initiate a fixed-length random walk from the query node.
This random walk should be long enough to ensure that
the visited peers represent a close sample from the
underlying stationary distribution (the appropriate length
of such a walk is determined in a preprocessing step). At
each visited peer we perform approximate aggregation
operations that include sum, average, min, and max. We
have used a multi resolution wavelet decomposition that
yields a compact data cube and provide approximate
answers to any range aggregate query from these
summaries.
The aggregate measures obtained are then analyzed at
the query node to determine the skewed nature of the
data that is distributed across the network, such as the
variance in the degrees of individual nodes in the P2P
graph and so on. Once this data has been analyzed at the
query node, estimation is made on how many more peers
are required so that the original query can be optimally
answered within the desired accuracy, with high
probability.
The second phase is then straightforward: A random
walk is reinitiated, and peers are selected according to
the recommendations made by the first phase.

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

553

Effectively, the first phase is used to “sniff” the network
and determine an optimal-cost “query plan,” which is
then implemented in the second phase.
In addition, we explore in-network techniques for
dissemination of values throughout the network. We
accomplish this through a hybrid technique building
upon the Gossip protocol. A Gossip protocol is executed
in rounds. For each round, participating peers select
adjacent peers uniformly at random sharing information.
C. Related work
 P2P systems are very popular because they
provide an efficient mechanism for building large
scalable systems. Many P2P systems have been
proposed for data management, including P2P databases
such as PIER [20]. Exact solutions to OLAP queries
have been considered in [15]. Methods to sample
random peers in P2P networks have been proposed in
[16], [19]. These techniques use Markov-chain random
walks to select random peers from the network. . Data
warehouses can be extremely large, yet obtaining quick
answers to queries is important. In many situations,
obtaining the exact answer to an OLAP query is
prohibitively expensive in terms of time and/or storage
space. It can be advantageous to have fast, approximate
answers to queries.[6]
 Peer OLAP acts as a large distributed cache,
which amplifies the benefits of traditional client-side
caching.[4] Peer OLAP which is a distributed caching
system for OLAP queries based on a Peer-to-Peer1
(P2P) network. The contributions of this work include:
(i) the proposal of the Peer OLAP architecture, (ii) the
employment of three cache control policies that impose
different levels of cooperation among the peers, and (iii)
the development of adaptive techniques that dynamically
recognize the network structure in order to minimize the
query cost.[4] an adaptive, bandwidth-efficient and easy
to deploy search algorithm for unstructured Peer-to-Peer
networks, the Adaptive Probabilistic Search method
(APS)[5]
 Previous work on data cube computation has
concentrated on how to compute the exact data cube. But
in reality, a data warehouse usually consists of many
tables and hence very expensive. Computing all the
extended data cubes and storing and retrieving them on
disk becomes infeasible when the number of underlying
relations/cubes is large since no enough disk storage is
available. Ho et al. [2] present an efficient algorithm to
speed up range-sum queries on a single data cube. The
main idea is to preprocess the (raw) data cube A and pre-
compute all the multidimensional partial sums, which
can be represented in what we call the partial sum data
cube P. Any range-sum query can be answered by
accessing and computing 2d entries from the partial sum
data cube, where d is the number of dimensions for
which ranges have been specified in the query. The
storage required for this partial sum data cube can be
proportional to the size of the raw data cube, which is
very large. Hence we employ a wavelet decomposition
based technique that has less storage cost and provides
fast and accurate answers.
 There are known techniques for computing approximate
aggregates in distributed settings (most notably, the
Gossip protocol [13], [14], [18]). The technique works

generally as a preprocessing step where all peers in a
network attempt to mix data among adjacent peers,
eventually converging upon a single value. The inability
to contact all nodes in the network makes it exceedingly
difficult to Gossip in the traditional sense.
D. Contributions and Overview
The contributions of this paper are summarized as
follows:
 We address the important problem of AQP on data

cubes in P2P systems, which is likely to be of
increasing significance in the future.

 We introduce I/O efficient algorithm to compute the
partial sum cube and multidimensional wavelet
decomposition of large data cubes in peer to peer
networks.

 We implement an efficient thresholding method [10]
based on the logarithm transform that dramatically
reduces the relative and absolute error in the
approximations.

 By using the thresholding method in building
wavelet-based histograms as proposed in [10], better
accuracy can be achieved even for the low
dimensional data.

 Hybrid sampling technique maximizes per-peer in-
network computation building upon the Gossip
protocol.

 Adaptive two-phase approaches are used based on
well-founded theoretical principles.

II. FOUNDATIONS OF OUR APPROACH

In this section, we discuss the principles behind our
approach for AQP on P2P databases.
A. The Peer-to-Peer Model
We assume an unstructured P2P network represented as
a graph G = { P,E } with a vertex set P = { p1,p2,. . , pM }
and an edge set E. The vertices in P represent the peers
in the network, and the edges in E represent the
connections between the vertices in P. Each peer p is
identified by the processor’s IP address and a port
number (IPp and portp). In unstructured P2P networks, a
node becomes a member of the network by establishing
a connection with at least one peer currently in the
network. Each node maintains a small number of
connections with its peers. The number of connections is
typically limited by the resources at the peer. We denote
the number of connections that a peer is maintaining by
pconn. The peers in the network use the Gnutella P2P
protocol to communicate. Our approach, on the other
hand, uses a probabilistic search algorithm based on
random walks. The key idea is that each node forwards a
query message, called walker, randomly to one of its
adjacent peers. This technique is shown to improve the
search efficiency and reduce unnecessary traffic in the
P2P network.
B. Random Walk in Graphs
In order to select random peers in a network a Markov-
chain random walk is used. It is a procedure that is
initiated at the query node, and for each visited peer, the
next peer to visit is selected with equal probability from
among its neighbors. It is well known that if this walk is
carried out long enough, then the eventual probability of
reaching any peer p will reach a stationary distribution.

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

554

To make this more precise, let P ={ p1,p2,. . . ,pM } be the
entire set of peers, let E be the entire set of edges, and let
the degree of a peer p be deg(p). Then, the probability of
any peer p in the stationary distribution is: prob(p) =

.

It is important to note that the above distribution is not
uniform. The probability of each peer is proportional to
its degree. We assume that we are allowed a certain
amount of preprocessing to determine various properties
of the P2P graph that will be useful at query time. The
speed of convergence of a random walk in this graph is
determined in this preprocessing step, in addition to
other useful properties such as the number of nodes M,
the number of edges |E|, and so on. With respect to speed
of convergence, we essentially determine a jump
parameter j that determines how many peers can be
skipped between selections of peers for the sample. As
the jump increases, the correlation between successive
peers that are selected for the sample decreases rapidly.
C. Our Compact Data cube Construction
Algorithm
Let D={D1,D2,….Dd } denote the set of dimensions
where each dimension corresponds to a functional
attribute .We represent the d-dimensional (raw) data
cube A by a d-dimensional array of size |D1|x|D2|x ……
|Dd|, where |Di| is the size of dimension Di. The problem
of computing a range-sum query in a d-dimensional data
cube can be formulated as follows:
Sum (l1:h1,..,ld:hd) =

The partial sum data cube P is a d-dimensional array of
size |D1|x|D2|x …… x|Dd| (which is the same as the size
of A). Its cells are defined as: P[x1,……,xn] = Sum
(0:x1,…..,0:xd) =

At a high level, our approximate data cube construction
algorithm works as follows:
1. In a preprocessing step, we form the partial sum
data cube P from the (raw) data cube A. (In our method,
we process P by replacing each cell value by its natural
logarithm.)
2. We compute the wavelet decomposition of P,
obtaining a set of N coefficients, where N is the size of
array A.
3. We keep only the C most significant wavelets
coefficients, for some C. The choice of which C
coefficients to keep demands upon the particular
thresholding method we use.
In the online phase, a query is answered by using the C
wavelet coefficients to reconstruct approximation of the
necessary values in P.
D. Thresholding and Error Measures
Our motivation in this paper is a compact, yet accurate
representation of the partial sum data cube. Given the
storage limitation for the compact data cube, we can
only “keep" a certain number of the N wavelet
coefficients. Let C denote the number of wavelet
coefficients that we have room to keep; the remaining
wavelet coefficients are implicitly set to 0. Typically we
have C«N. The goal of thresholding is to determine
which are the “best" C coefficients to keep, so as to

minimize the error of approximation.
We can measure the error of approximation in several
ways. Let vi be the actual answer of a query qi and let |

be the approximate answer. We use the following four
different error measures for the error ei of approximating
query qi :

The parameters α ,β are positive constants.
These error measures are special cases of the p-norm
average error, for p>0 :

 ||e||p = .

The first step in thresholding is normalizing the
coefficients in a certain way (which corresponds to using
a particular basis, such as an orthonormal basis). To
minimize the relative error: We take the natural
Logarithm of each element in P before we do the
wavelet decomposition, and we apply the inverse (i.e.,
exponentiation) after reconstruction in the on-line phase.
This logarithm transformation not only does it
dramatically lower the relative error of the
approximation in our experiments, it also lowers the
absolute error, no matter which norm we use to measure
the error. Such a phenomenon does not occur when the
logarithm transform is used with histogram methods,
such as MaxDiff histogram [17], for example; the
MaxDiff relative error shows some improvement
(compared with when the logarithm transform is not
used), but its absolute error increases substantially. The
C wavelet coefficients together with their C indices(in
the one-dimensional order of cells), form the compact
data cube.
1) Answering Range Queries in the On-Line
Phase
Each range-sum query can be expressed as sums and
differences of a certain set of cell values from the
multidimensional partial sum data cube P [2]. The set of
cells are the ones on the corners of the query hyper
plane:
Theorem 1 [12] : The answer for the d-dimensional
range sum query
 AND …… AND is v =

where s(k) =

By convention, we define P =0

if ij = -1 for any 1 ≤ j ≤ d .

Type Notation Definition
Absolute error

Relative error

Modified
relative error

Combined
error

ei
abs

ei

rel

ei

m_rel

ei
comb

|vi - |

|vi - |

Max{ 1,Vi }
|vi - |

max{ 1,min{ vi -
} }

min{ α x ei

abs,β x
ei

rel }

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

555

We make use of Theorem to compute our approximation

 of the query value v by computing an approximate

reconstruction of each needed cell value P[i1,i2,...... id] in
(4). Each reconstruction is based on the inverse wavelet
transform of the C wavelet coefficients; the other N-C
coefficients are implicitly set to 0. The time for
reconstruction is crucial for the query performance.
2) Sampling Theorems

In this section, we shall develop the formal sampling
theorems that drive our algorithm. It implies how the
“query plan” should be executed, for answering the
query approximately so that a desired error is achieved.
Let P ={p1,p2, . . . , pM} is the set of peers. Let the
aggregate for a peer p be y(p)and y be the exact answer
for the query, that is, y=∑ pPy(p). The query also comes
with a desired error threshold req. The implication of
this requirement is that if y1is the estimated count by our
algorithm, then |y-y1| ≤ req .
Now, consider a fixed-size sample of peers S = {s1; s2 . .
. sm}; where each si is from P. This sample is picked by
the random walk in the first phase. We can approximate
this process as that of picking peers in m rounds, where
in each round, a random peer si is picked from P, with
probability prob(si).
Consider the quantity y11 defined as follows:

 Y11 =

Intuitively, each sampled peer s tries to estimate y as y(s)
/ prob(s), that is, by scaling its own aggregate by the
Inverse of its probability of getting picked. The final
estimate y11 is simply the average of the m individual
estimates. Hence, E [y11] = y, that is, y11, is an unbiased
estimator of y. Standard Error Theorem proves that the
variance varies inversely as the sample size.
Var [y11] = C/m.

Where C = prob(p) ;

The quantity C also represents the “badness” of the
clustering of the data in the peers: The larger the C, the
more the correlation among the tuples within peers and,
consequently, the more peers need to be sampled to keep
the variance of the estimator y11 small for a given desired
error threshold req, and the task is to determine the
appropriate number of peers to sample that will satisfy
this threshold. A simple cross-validation procedure is
described below to estimate C
Consider two random samples of peers of size m, each
drawn from the stationary distribution. Let y1

11 and y2
11

be the two estimates of y by these samples, cross-
validation error (CVError) is defined as : CV Error =
|y1

11 – y2
11|.

Theorem 1: E[CV Error2] = 2E[(y11 - y)2]
Proof: E[CV Error2] = E[(y1

11 – y2
11)2]

 = E[(y1
11 - y)2] + E[(y2

11 - y)2]
 = 2E[(y11 - y)2]
This theorem says that the expected value of the square
of the CVError is two times the expected value of the
square of the actual error. This CVError can be

estimated in the first phase by the following procedure.
Randomly divide the m samples into halves and compute
the CVError (for sample size m=2). We can then
determine C by fitting this computed error and the
sample size m=2 in Var[y11]. We also note that since the
CVError is larger than the true error, the value of C is
conservatively overestimated. Once C is determined
(that is, the “badness” of the clustering of data in the
peers), we can determine the right number of peers to
sample in the second phase m1 to achieve the desired
accuracy.
3) Hybrid Approach
In order to further improve the quality of our random
sampling process, we have employed a hybrid sampling
technique by allowing individually selected peers to
perform additional sampling in parallel with the random
sampling phase. We exploit the fact that during a
random walk, previously selected peers can perform
further independent processing while waiting for the
final peer to be selected for sampling during the random-
walk phase.
We use a hybrid solution for random sampling, focusing
on extending our technique with a hybrid in-network
decentralized approach. Upon selection of a peer pi by
the random-walk phase, pi contains a period pi period
where further processing may be performed to improve
the quality of a peer’s local data. The period pi period is
defined as the number of hops remaining in the random-
walk phase before the final peer pm is selected for
sampling. In order to exploit these periods, we propose
an incremental decentralized sampling technique
building upon the Gossip protocol [18].
The number of messages sent over the network due to
gossiping may be varied based upon the user-defined
parameters ra and rr. Parameter ra is the number of edges
that a peer may randomly select for gossiping, and rr is
the maximum number of hops from pi that gossiping is
permitted. These two parameters combined allow the
user to leverage in-network computation, without
affecting the number of messages sent back to the query
node, avoiding possible bottlenecks.
 Our hybrid algorithm executes as follows:
1. Given a random start-location peer p0, the local group
is { p0 }.
2. Initialize a group for each selected peer pi : groupi {
pi }.
3. For each peer in groupi, randomly select ra adjacent
peers.
4. Extend the local group to include adjacent peers if and
only if (path from pi≤ rr) groupi groupi U{for each peer
in groupi add pi1 . . . ra}.
5. Perform Gossip on current groupi.
6. Continue steps 2-5 for each peer in groupi until pi
period has been reached.
7. All peers selected by the random sampling phase,
excluding peers selected by the local groups, send their
current mixed values back to the query node.
8. Compute remaining algorithm normally.
Peers near the beginning of the random walk have a
longer period to gossip, whereas peers closer to the end
of the walk contain an incrementally smaller period for
gossiping.

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

556

III. OUR ALGORITHM

In this section, we present details of our two-phase
algorithm for approximate answering of range aggregate
queries. For illustration, we focus on approximating
COUNT queries (it can be easily extended to SUM,
AVERAGE, and MEDIAN queries).
A. Count
Our approach in the first phase is broken up into the
following main components. First, we perform a random
walk on the P2P network, attempting to avoid skewing
due to graph clustering and vertices of high degree. Our
walk skips j nodes between each selection to reduce the
dependency between consecutive selected peers. As the
jump size increases, our method increases overall
bandwidth requirements within the database, but for
most cases, small jump sizes suffice for obtaining
random samples. Second, we compute aggregates of the
data at the peers and send these back to the query node.
Third, we estimate the CVError of the collected sample
and use that to estimate the additional number of peers
that need to be visited in the second phase.
 For improving robustness, the cross-validation
procedure can be repeated a few times, as well as the
average squared CVError computed. Once the first phase
has completed, the second phase is then straightforward.
We simply initiate a second random walk based on the
recommendations of the first phase and compute the
final aggregate.

B. SUM and AVERAGE
Although the algorithm has been presented for COUNT
queries, it can be easily extended to other aggregates
such as the SUM and AVERAGE by modifying the
y(Curr) value specified in the algorithm. For the SUM,
no changes are required, and for the AVERAGE, we
calculate SUM/COUNT.

Algorithm: COUNT queries
Predefined values
M : total number of peers in network
E : total number of edges in network
m : number of peers to visit in phase 1
j : jump size for random walk

Inputs
Q : COUNT query with selection condition
Sink : peer where query is initiated
req : desired max error

Phase 1
// Perform random walk
1. Curr = Sink; Hops = 1;
2. while (Hops < j * m) {
3. if (Hops % j)
4. Visit(Curr);
5. Hops++;
6. Curr = random adjacent peer
7. }
//Visit peer
1.Visit(Curr) {
2. if (thresholded Cube P is present){
3. Thresholding the Data Cube P and

 minimizing the error measures (2.4.3)
4. Execute query in On-Line Phase (2.4.4)
5. else
6. Compute partial Sum Data Cube P (2.4.1)
7. Wavelet Decomposition of the Partial Sum
 Data Cube P (2.4.2)
8. Thresholding the Data Cube P and
 minimizing the error measures (2.4.3)
9. Execute the query in On-Line Phase (2.4.4)
10. }
11. y(Curr)=result of Q
12. Return(y(Curr), deg(Curr)) to Sink
13.}

// Cross validate at sink
1. Let S = { s1, s2, . . . , sm } be the visited peers
2. Partition S randomly into halves: S1 and S2

3. Compute Y1
11 = ;

 Y2
11 = Where prob(s) = ;

4. Compute CV Error = |y1
11 – y2

11|.

5. Return m1 = (m/2) *

Phase 2

1. Visit m1 peers by using random walk
2. Let S1 = {s1, s2, . . . , sm

1} be the visited peers

3. Return y1 =

IV. EXPERIMENTAL EVALUATIONS

A. Implementation
Our algorithms and P2P topologies are implemented in
Java 6.0 with the graph generation tool Jung [17] version
2.0. Our implementation includes both sampled and real-
world Gnutella topology samples. All of our experiments
were run on Intel Core2Duo 2.0-GHz processors with 2
Gbytes of RAM.
B. Input Parameters
We evaluate the accuracy, the use of network resources,
the size of sample acquired, and the total number of
tuples sampled from the network. We define each of the
user defined inputs as follows:
1. Required Accuracy (req). This parameter defines the
maximum allowed error for the estimated answer.
Provided by the user for each query.
2. Jump Size (j). This parameter defines the number of
peers to be passed over before selecting the next peer for
sampling.
C. Evaluation Metrics
 Accuracy, Performance and Efficiency
Our algorithms are evaluated based up on their relative
performance with other techniques, accuracy and how
close they get to the desired accuracy. Efficiency of our
hybrid algorithm is compared with the original
algorithm. Here we measure the accuracy as the
percentage of error obtained.
D. Experiments

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

557

All of our results were generated from three independent
experiments and averaged for each individual parameter
configurations. Errors are normalized between 0 and 1.
E. Accuracy
Figs. 2 and 3 shows representative accuracy results on
applying our hybrid algorithm for COUNT query using
synthetic and real world topologies. In this case, we have
a COUNT query whose absolute error percentage is
noted as we vary the required accuracy. The figure
shows that the algorithm’s result is always within the
required
accuracy.

Fig 2: Req Accuracy vs Error in synthetic topologies

Fig 3: Req Accuracy vs Error in Gnutella topologies

F. Relative performance of wavelets
Figs. 4 and 5 show the effect of storage space on
absolute and relative error respectively by using
wavelets and its related methods. We can observe that
wavelet-based histograms use less storage space at the
same time give more accurate results than random
sampling and traditional histogram methods.

 Fig 4: Storage space vs Absolute Error on applying
different methods

Fig 5: Storage space vs Relative Error on

applying different methods

G. Comparison with Naive Techniques
Fig. 6 compares our approach for selecting peers with
the traditional techniques like depth-first search (DFS),
breadth-first search (BFS) where we execute our query
on peers selected using a random walk in the
neighborhood of the querying peer. Note that our method
always meets the required accuracy. Our technique
clearly outperforms both techniques.

Fig. 6. Random walks perform better than BFS and DFS

 Fig. 7. Effect of Gossip radius with no. of adjacent rs

on error percentage for the COUNT query.

H. Efficiency of Hybrid algorithm
Fig 7 includes the original algorithm by setting rr = 0,
which represents the original algorithm without
gossiping. Fig. 7 shows that as the number of edges that
a peer randomly selects for gossiping rr and the
maximum number of hops from pi that gossiping is
permitted ra are increased, the accuracy of the results
increases steadily and that rr and ra are increased, the
accuracy increases for the hybrid algorithm, obtaining
lower error percentage as compared to the original
algorithm.

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

558

V. CONCLUSION
In this paper, we present adaptive sampling-based
techniques for the approximate answering of ad hoc
aggregation queries in P2P databases. Our approach
requires a minimal number of messages sent over the
network and provides tunable parameters to maximize
performance for various network topologies.
We present an I/O-efficient technique based upon a
multi resolution wavelet decomposition that yields an
approximate and space-efficient representation of the
data cube. We get excellent approximations for on-line
range-sum queries with limited space usage and
computational cost. One drawback of our current
approach is that the construction of the wavelet
decomposition is performed on the dense data cube,
which may be very large. Thus to reduce the I/O cost in
constructing the compact data cube, the partial sum data
cube can be implicitly represented in a more compressed
form, and some sparse techniques may be used to reduce
the I/O in computing the wavelet decomposition.
Our approach provides a powerful technique for
approximating range aggregates of various topologies
and data clustering but comes with limitations based
upon a given topologies structure and connectivity. For
topologies with very distinct clusters of peers (small cut
size), it becomes increasingly difficult to quickly reach
all clusters. This can be resolved by increasing the jump
size, allowing a larger number of peers to be considered
and increasing the allowed mixing by our hybrid
approach.

REFERENCES
[1] Mauricio Minuto Espil, Alejandro A. Vaisman, “Aggregate Queries

in Peer to Peer OLAP” DOLAP’04, November 12–13, 2004,
Washington, DC, USA. Copyright 2004 ACM
1581139772/04/0011

[2] David Kempe_, Alin Dobra, and Johannes Gehrke, “Gossip-Based
Computation of Aggregate Information” Supported by NSF
Grants IIS-0133481 and CCR-0205452, and by gifts from
Microsoft and Intel

[3] Antony Rowstron1 and Peter Druschel “Pastry: Scalable,
decentralized object location and routing for large-scale peer-to-
peer systems” Appears in Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware 2001). Heidelberg, Germany, November 2001

[4] Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, Dimitris Papadias,
Kian-Lee Tan “An Adaptive Peer-to-Peer Network for
Distributed Caching of OLAP Results” ACM SIGMOD '2002
June 4-6, Madison, Wisconsin, USA Copyright 2002 ACM
1-58113-497-5/02/06

[5] Dimitrios Tsoumakos, Nick Roussopoulos, “Adaptive Probabilistic
Search (APS) for Peer-to-Peer Networks” CS-TR-4451,
UMIACS-TR-2003-21 February 25, 2003

[6] Jeffrey Scott Vitter, Min Wang, Bala Iyer, “Data Cube
Approximation and Histograms via Wavelets”

[7] Qin Lv, Pei Cao, Edith Cohen, “Search and Replication in
Unstructured Peer to Peer Networks” ICS’02, June 2226,2002,
New York, New York, USA Copyright 2002 ACM
1581134835/02/0006

[8]Valerie King, Jared Saia “Choosing a Random Peer” PODC’04,
July 25–28, 2004, St. Johns, Newfoundland, Canada.Copyright
2004 ACM 1581138024/04/0007

[9] M.M. Espil and A.A. Vaisman, “Aggregate Queries in Peer-to-Peer
OLAP,” Proc. 7th ACM Int’l Workshop Data Warehousing and
On-Line Analytical Processing (DOLAP ’04), 2004.

[10] Y.Matias, J.S. Vitter, and M. Wang, Wavelet based histograms
for selectivity estimation. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data,
Seattle, Washington, June 1998.

[11] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the
attribute value independence assumption. In Proceedings of the
1997 International Conference on Very Large Databases, Athens,
Greece, August 1997.

[12] S. Sarawagi and M. Stonebraker. Efficient organization of large
multidimensional arrays. In Proceedings of the 11th Annual IEEE
Conference on Data Engineering (ICDE '94),Houston, Texas,
1994.

[13] S.Boyd, A.Ghosh, B.Prabhakar, and D. Shah, “Analysis and
Optimization of Randomized Gossip Algorithms,” Proc. 43rd
IEEE Conf. Decision and Control (CDC ’04), 2004.

[14] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip and
Mixing Times of Random Walks on Random Graphs,” Proc.
IEEE INFOCOM ’05, 2005.

[15] Y. Chu, S. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. ACM Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS ’00), 2000.

[16] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer
to Peer Networks,” Proc. IEEE INFOCOM ’04, 2004.

[17] JUNG Web Site, http://jung.sourceforge.net, 2010.
[18] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation

of Aggregate Information,” Proc. 44th Ann. IEEE Symp.
Foundations of Computer Science (FOCS ’03), 2003.

[19] V. King and J. Saia, “Choosing a Random Peer,” Proc. 23rd Ann.
ACM Symp. Principles of Distributed Computing (PODC ’04),
2004.

[20] R. Heubsch, J. Hellerstein, N. Lanhan, B.T. Loo, S. Shenker, and
I.Stoica, “Querying the Internet with PIER,” Proc. 29th Int’l
Conf.Very Large Data Bases (VLDB ’03), 2003.

[21] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. IFIP/ACM Int’l Conf. Distributed Systems
Platforms (Middleware ’01),2001.

[22] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos,
“Exploiting Locality for Scalable Information Retrieval in Peer-
to-Peer Networks,” Information System, vol. 30, no. 4, pp. 277-
298, 2005.

K.Seetha Devi et al IJCSET |October 2011 | Vol 1, Issue 9, 553-559

559

