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Abstract- Individual computers provide opportunities for 
tremendous productivity gains, but they become many 
times more powerful when they're connected to one 
another forming a peer to peer network that gives them the 
ability to share data and processing resources. This paper 
presents data exchange between peers occurs when one of 
them, in the role of a local peer, needs data available in 
other nodes, denoted the acquaintances of the local peer 
and also an adaptive dual-phase approach based on 
random walks of the P2P graph for efficiently serving 
range aggregate queries on data cubes in a peer to peer 
system. The problem of answering large-scale ad hoc 
analysis queries, for example, range aggregate queries on 
data cubes possesses unique challenges. Exact solutions can 
be time consuming and difficult to implement, given the 
distributed and dynamic nature of P2P data cubes. In this 
paper, we use an I/O-efficient technique based up on a 
multi resolution wavelet decomposition that yields excellent 
approximations for range aggregate queries with limited 
space usage and computational cost. 
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I. INTRODUCTION 
From the past few years, there is an increase in the use of 
complex databases for data analysis by various scientific 
and business organizations. Organizations frequently 
expand, adding geographically distributed branches and 
acquiring subsidiaries. As a result, a single centralized 
data warehouse may be too expensive or difficult to 
construct. Instead, the enterprise may temporarily or 
permanently decide to utilize a number of smaller, 
remotely located data warehouses. The on-line analytical 
processing (OLAP) or decision support applications, 
analyze the data in a data warehouse to glean interesting 
trend information. OLAP systems typically organize the 
data in the form of a data cube, a hierarchy of multi-
dimensional sub cubes, where each sub-cube describes 
the distribution of data in a set of dimensions, and 
materialize part or  the entire data cube. For example, 
retailers use OLAP systems to analyze vast amounts of 
sales data in order to evaluate new marketing strategies. 
It is well known that these applications access large 
amounts of data and involve complex aggregate queries. 
At the same time, they require very quick responses. The 
dynamics of large-scale distributed systems are often 
significantly different. For example, in P2P networks, 
individual machines are often under the control of a 
large number of heterogeneous users who may join or 
leave the network at any time [2] Peer to peer systems 
have many interesting technical aspects like 
decentralized control, self organization, adaptation and 
scalability. Peer-to-peer systems can be characterized as 
distributed systems in which all nodes have identical 

capabilities and responsibilities and all communication is 
symmetric [3] three aspects of a P2P system: P2P 
network topology, query distribution and replication. By 
network topology, we mean the graph formed by the P2P 
overlay network; each P2P member has a certain number 
of neighbors" and the set of neighbor connections forms 
the P2P overlay network [7]. 
A. Goal of the Paper 
We aim at significantly reducing the load for answering 
range aggregate queries on data cubes in peer-to-peer 
networks. Specifically, we concentrate on I/O-efficient 
technique based upon a multi resolution wavelet 
decomposition that yields a compact and accurate 
representation of the data cube built on the logarithms of 
the partial sums of the raw data values. The compact 
cube after normalization and thresholding to reduce 
storage cost provides fast and accurate answers to on-
line range aggregate queries.  
An approach with these characteristics can be useful in 
various contexts. For example, consider a worldwide 
company on an enterprise network or a worldwide 
virtual organization with users interested in geographical 
data. In both cases the users would not be interested in 
wasting time in performing data analysis related 
operations. Hence we introduce wavelets based 
approximate answering to any range aggregate query 
initiated by any peer in the network. 
B. Our Approach 
We briefly describe the framework of our approach. Our 
approach has two major phases. In the first phase, we 
initiate a fixed-length random walk from the query node. 
This random walk should be long enough to ensure that 
the visited peers represent a close sample from the 
underlying stationary distribution (the appropriate length 
of such a walk is determined in a preprocessing step). At 
each visited peer we perform approximate aggregation 
operations that include sum, average, min, and max. We 
have used a multi resolution wavelet decomposition that 
yields a compact data cube and provide approximate 
answers to any range aggregate query from these 
summaries. 
The aggregate measures obtained are then analyzed at 
the query node to determine the skewed nature of the 
data that is distributed across the network, such as the 
variance in the degrees of individual nodes in the P2P 
graph and so on. Once this data has been analyzed at the 
query node, estimation is made on how many more peers 
are required so that the original query can be optimally 
answered within the desired accuracy, with high 
probability.  
The second phase is then straightforward: A random 
walk is reinitiated, and peers are selected according to 
the recommendations made by the first phase. 
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Effectively, the first phase is used to “sniff” the network 
and determine an optimal-cost “query plan,” which is 
then implemented in the second phase.  
In addition, we explore in-network techniques for 
dissemination of values throughout the network. We 
accomplish this through a hybrid technique building 
upon the Gossip protocol. A Gossip protocol is executed 
in rounds. For each round, participating peers select 
adjacent peers uniformly at random sharing information. 
C. Related work 
 P2P systems are very popular because they 
provide an efficient mechanism for building large 
scalable systems. Many P2P systems have been 
proposed for data management, including P2P databases 
such as PIER [20]. Exact solutions to OLAP queries 
have been considered in [15]. Methods to sample 
random peers in P2P networks have been proposed in 
[16], [19]. These techniques use Markov-chain random 
walks to select random peers from the network. . Data 
warehouses can be extremely large, yet obtaining quick 
answers to queries is important. In many situations, 
obtaining the exact answer to an OLAP query is 
prohibitively expensive in terms of time and/or storage 
space. It can be advantageous to have fast, approximate 
answers to queries.[6] 
   Peer OLAP acts as a large distributed cache, 
which amplifies the benefits of traditional client-side 
caching.[4] Peer OLAP which is a distributed caching 
system for OLAP queries based on a Peer-to-Peer1 
(P2P) network. The contributions of this work include: 
(i) the proposal of the Peer OLAP architecture, (ii) the 
employment of three cache control policies that impose 
different levels of cooperation among the peers, and (iii) 
the development of adaptive techniques that dynamically 
recognize the network structure in order to minimize the 
query cost.[4] an adaptive, bandwidth-efficient and easy 
to deploy search algorithm for unstructured Peer-to-Peer 
networks, the Adaptive Probabilistic Search method 
(APS)[5] 
 Previous work on data cube computation has 
concentrated on how to compute the exact data cube. But 
in reality, a data warehouse usually consists of many 
tables and hence very expensive. Computing all the 
extended data cubes and storing and retrieving them on 
disk becomes infeasible when the number of underlying 
relations/cubes is large since no enough disk storage is 
available. Ho et al. [2] present an efficient algorithm to 
speed up range-sum queries on a single data cube. The 
main idea is to preprocess the (raw) data cube A and pre-
compute all the multidimensional partial sums, which 
can be represented in what we call the partial sum data 
cube P. Any range-sum query can be answered by 
accessing and computing 2d entries from the partial sum 
data cube, where d is the number of dimensions for 
which ranges have been specified in the query. The 
storage required for this partial sum data cube can be 
proportional to the size of the raw data cube, which is 
very large. Hence we employ a wavelet decomposition 
based technique that has less storage cost and provides 
fast and accurate answers.  
 There are known techniques for computing approximate 
aggregates in distributed settings (most notably, the 
Gossip protocol [13], [14], [18]). The technique works 

generally as a preprocessing step where all peers in a 
network attempt to mix data among adjacent peers, 
eventually converging upon a single value. The inability 
to contact all nodes in the network makes it exceedingly 
difficult to Gossip in the traditional sense.  
D. Contributions and Overview 
The contributions of this paper are summarized as 
follows: 
 We address the important problem of AQP on data 

cubes in P2P systems, which is likely to be of 
increasing significance in the future. 

 We introduce I/O efficient algorithm to compute the 
partial sum cube and multidimensional wavelet 
decomposition of large data cubes in peer to peer 
networks. 

 We implement an efficient thresholding method [10] 
based on the logarithm transform that dramatically 
reduces the relative and absolute error in the 
approximations. 

 By using the thresholding method in building 
wavelet-based histograms as proposed in [10], better 
accuracy can be achieved even for the low 
dimensional data. 

 Hybrid sampling technique maximizes per-peer in-
network computation building upon the Gossip 
protocol. 

 Adaptive two-phase approaches are used based on 
well-founded theoretical principles. 

 
II. FOUNDATIONS OF OUR APPROACH 

In this section, we discuss the principles behind our 
approach for AQP on P2P databases. 
A. The Peer-to-Peer Model 
We assume an unstructured P2P network represented as 
a graph G = { P,E } with a vertex set P = { p1,p2,. . , pM } 
and an edge set E. The vertices in P represent the peers 
in the network, and the edges in E represent the 
connections between the vertices in P. Each peer p is 
identified by the processor’s IP address and a port 
number (IPp and portp). In unstructured P2P networks, a 
node becomes a member of the network by establishing 
a connection with at least one peer currently in the 
network. Each node maintains a small number of 
connections with its peers. The number of connections is 
typically limited by the resources at the peer. We denote 
the number of connections that a peer is maintaining by 
pconn. The peers in the network use the Gnutella P2P 
protocol to communicate. Our approach, on the other 
hand, uses a probabilistic search algorithm based on 
random walks. The key idea is that each node forwards a 
query message, called walker, randomly to one of its 
adjacent peers. This technique is shown to improve the 
search efficiency and reduce unnecessary traffic in the 
P2P network. 
B. Random Walk in Graphs 
In order to select random peers in a network a Markov-
chain random walk is used. It is a procedure that is 
initiated at the query node, and for each visited peer, the 
next peer to visit is selected with equal probability from 
among its neighbors. It is well known that if this walk is 
carried out long enough, then the eventual probability of 
reaching any peer p will reach a stationary distribution. 
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To make this more precise, let P ={ p1,p2,. . . ,pM } be the 
entire set of peers, let E be the entire set of edges, and let 
the degree of a peer p be deg(p). Then, the probability of 
any peer p in the stationary distribution is: prob(p) = 

. 

It is important to note that the above distribution is not 
uniform. The probability of each peer is proportional to 
its degree. We assume that we are allowed a certain 
amount of preprocessing to determine various properties 
of the P2P graph that will be useful at query time. The 
speed of convergence of a random walk in this graph is 
determined in this preprocessing step, in addition to 
other useful properties such as the number of nodes M, 
the number of edges |E|, and so on. With respect to speed 
of convergence, we essentially determine a jump 
parameter j that determines how many peers can be 
skipped between selections of peers for the sample. As 
the jump increases, the correlation between successive 
peers that are selected for the sample decreases rapidly. 
C. Our Compact Data cube Construction 
Algorithm 
Let D={D1,D2,….Dd } denote the set of dimensions 
where each dimension corresponds to a functional 
attribute .We represent the d-dimensional (raw) data 
cube A by a d-dimensional  array of size |D1|x|D2|x …… 
|Dd|, where |Di| is the size of dimension Di. The problem 
of computing a range-sum query in a d-dimensional data 
cube can be formulated as follows:  
Sum (l1:h1,..,ld:hd) =  

The partial sum data cube P is a d-dimensional array of 
size |D1|x|D2|x …… x|Dd| (which is the same as the size 
of A).  Its cells are defined as: P[x1,……,xn] = Sum 
(0:x1,…..,0:xd) =                                 

 

At a high level, our approximate data cube construction 
algorithm works as follows: 
1. In a preprocessing step, we form the partial sum 
data cube P from the (raw) data cube A. (In our method, 
we process P by replacing each cell value by its natural 
logarithm.) 
2. We compute the wavelet decomposition of P, 
obtaining a set of N coefficients, where N is the size of 
array A. 
3. We keep only the C most significant wavelets 
coefficients, for some C. The choice of which C 
coefficients to keep demands upon the particular 
thresholding method we use. 
In the online phase, a query is answered by using the C 
wavelet coefficients to reconstruct approximation of the 
necessary values in P. 
D. Thresholding and Error Measures 
Our motivation in this paper is a compact, yet accurate 
representation of the partial sum data cube. Given the 
storage limitation for the compact data cube, we can 
only “keep" a certain number of the N wavelet 
coefficients. Let C denote the number of wavelet 
coefficients that we have room to keep; the remaining 
wavelet coefficients are implicitly set to 0. Typically we 
have C«N. The goal of thresholding is to determine 
which are the “best" C coefficients to keep, so as to 

minimize the error of approximation.  
We can measure the error of approximation in several 
ways. Let vi be the actual answer of a query qi and let | 

be the approximate answer. We use the following four 
different error measures for the error ei of approximating 
query qi :  

The parameters α ,β are positive constants. 
These error measures are special cases of the p-norm 
average error, for p>0 :  

                    ||e||p =  . 

The first step in thresholding is normalizing the 
coefficients in a certain way (which corresponds to using 
a particular basis, such as an orthonormal basis). To 
minimize the relative error: We take the natural 
Logarithm of each element in P before we do the 
wavelet decomposition, and we apply the inverse (i.e., 
exponentiation) after reconstruction in the on-line phase. 
This logarithm transformation not only does it 
dramatically lower the relative error of the 
approximation in our experiments, it also lowers the 
absolute error, no matter which norm we use to measure 
the error. Such a phenomenon does not occur when the 
logarithm transform is used with histogram methods, 
such as MaxDiff histogram [17], for example; the 
MaxDiff relative error shows some improvement 
(compared with when the logarithm transform is not 
used), but its absolute error increases substantially. The 
C wavelet coefficients together with their C indices(in 
the one-dimensional order of cells), form the compact 
data cube. 
1) Answering Range Queries in the On-Line 
Phase 
Each range-sum query can be expressed as sums and 
differences of a certain set of cell values from the 
multidimensional partial sum data cube P [2]. The set of 
cells are the ones on the corners of the query hyper 
plane: 
Theorem 1 [12] : The answer for the d-dimensional 
range sum query 
  AND …… AND      is v = 

  

where  s(k) =   

By convention, we define P =0  

if ij = -1 for any 1 ≤ j ≤ d . 

Type Notation Definition 
Absolute error 
 
Relative error 
 
Modified 
relative error 
 
Combined 
error 

ei
abs

 
ei

rel 

 
ei

m_rel 

 

ei
comb 

|vi - | 

|vi - | 

Max{ 1,Vi } 
|vi - | 

max{ 1,min{ vi - 
} } 

 
min{ α x ei

abs,β x 
ei

rel } 
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We make use of Theorem to compute our approximation 

 of the query value v by computing an approximate 

reconstruction of each needed cell value P[i1,i2,...... id] in 
(4). Each reconstruction is based on the inverse wavelet 
transform of the C wavelet coefficients; the other N-C 
coefficients are implicitly set to 0. The time for 
reconstruction is crucial for the query performance. 
2) Sampling Theorems 
 
In this section, we shall develop the formal sampling 
theorems that drive our algorithm. It implies how the 
“query plan” should be executed, for answering the 
query approximately so that a desired error is achieved. 
Let P ={p1,p2, . . . , pM} is the set of peers. Let the 
aggregate for a peer p be y(p)and  y be the exact answer 
for the query, that is,  y=∑ pPy(p). The query also comes 
with a desired error threshold req. The implication of 
this requirement is that if y1is the estimated count by our 
algorithm, then |y-y1| ≤ req . 
Now, consider a fixed-size sample of peers S = {s1; s2 . . 
. sm}; where each si is from P. This sample is picked by 
the random walk in the first phase. We can approximate 
this process as that of picking peers in m rounds, where 
in each round, a random peer si is picked from P, with 
probability prob(si).  
Consider the quantity y11 defined as follows:         

                       Y11 =  

Intuitively, each sampled peer s tries to estimate y as y(s) 
/ prob(s), that is, by scaling its own aggregate by the 
Inverse of its probability of getting picked. The final 
estimate y11 is simply the average of the m individual 
estimates. Hence, E [y11] = y, that is, y11, is an unbiased 
estimator of y. Standard Error Theorem proves that the 
variance varies inversely as the sample size.  
Var [y11] = C/m. 

Where C = prob(p) ; 

The quantity C also represents the “badness” of the 
clustering of the data in the peers: The larger the C, the 
more the correlation among the tuples within peers and, 
consequently, the more peers need to be sampled to keep 
the variance of the estimator y11 small for a given desired 
error threshold req, and the task is to determine the 
appropriate number of peers to sample that will satisfy 
this threshold. A simple cross-validation procedure is 
described below to estimate C 
Consider two random samples of peers of size m, each 
drawn from the stationary distribution. Let y1

11 and y2
11 

be the two estimates of y by these samples, cross-
validation error (CVError) is defined as : CV Error = 
|y1

11 – y2
11|. 

 
Theorem 1:     E[CV Error2] = 2E[(y11 - y)2] 
Proof:    E[CV Error2] = E[(y1

11 – y2
11)2]  

 = E[(y1
11 - y)2] + E[(y2

11 - y)2] 
       = 2E[(y11 - y)2] 
This theorem says that the expected value of the square 
of the CVError is two times the expected value of the 
square of the actual error. This CVError can be 

estimated in the first phase by the following procedure. 
Randomly divide the m samples into halves and compute 
the CVError (for sample size m=2). We can then 
determine C by fitting this computed error and the 
sample size m=2 in Var[y11]. We also note that since the 
CVError is larger than the true error, the value of C is 
conservatively overestimated. Once C is determined 
(that is, the “badness” of the clustering of data in the 
peers), we can determine the right number of peers to 
sample in the second phase m1 to achieve the desired 
accuracy. 
3) Hybrid Approach 
In order to further improve the quality of our random 
sampling process, we have employed a hybrid sampling 
technique by allowing individually selected peers to 
perform additional sampling in parallel with the random 
sampling phase. We exploit the fact that during a 
random walk, previously selected peers can perform 
further independent processing while waiting for the 
final peer to be selected for sampling during the random-
walk phase. 
We use a hybrid solution for random sampling, focusing 
on extending our technique with a hybrid in-network 
decentralized approach. Upon selection of a peer pi by 
the random-walk phase, pi contains a period pi period 
where further processing may be performed to improve 
the quality of a peer’s local data. The period pi period is 
defined as the number of hops remaining in the random-
walk phase before the final peer pm is selected for 
sampling. In order to exploit these periods, we propose 
an incremental decentralized sampling technique 
building upon the Gossip protocol [18].  
The number of messages sent over the network due to 
gossiping may be varied based upon the user-defined 
parameters ra and rr. Parameter ra is the number of edges 
that a peer may randomly select for gossiping, and rr is 
the maximum number of hops from pi that gossiping is 
permitted. These two parameters combined allow the 
user to leverage in-network computation, without 
affecting the number of messages sent back to the query 
node, avoiding possible bottlenecks. 
 Our hybrid algorithm executes as follows: 
1. Given a random start-location peer p0, the local group 
is { p0 }. 
2. Initialize a group for each selected peer pi : groupi { 
pi }. 
3. For each peer in groupi, randomly select ra adjacent 
peers. 
4. Extend the local group to include adjacent peers if and 
only if (path from pi≤ rr) groupi groupi U{for each peer 
in groupi add pi1 . . . ra}. 
5. Perform Gossip on current groupi. 
6. Continue steps 2-5 for each peer in groupi until pi 
period has been reached. 
7. All peers selected by the random sampling phase, 
excluding peers selected by the local groups, send their 
current mixed values back to the query node. 
8. Compute remaining algorithm normally. 
Peers near the beginning of the random walk have a 
longer period to gossip, whereas peers closer to the end 
of the walk contain an incrementally smaller period for 
gossiping. 
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III. OUR ALGORITHM 
 
In this section, we present details of our two-phase 
algorithm for approximate answering of range aggregate 
queries. For illustration, we focus on approximating 
COUNT queries (it can be easily extended to SUM, 
AVERAGE, and MEDIAN queries).  
A. Count 
Our approach in the first phase is broken up into the 
following main components. First, we perform a random 
walk on the P2P network, attempting to avoid skewing 
due to graph clustering and vertices of high degree. Our 
walk skips j nodes between each selection to reduce the 
dependency between consecutive selected peers. As the 
jump size increases, our method increases overall 
bandwidth requirements within the database, but for 
most cases, small jump sizes suffice for obtaining 
random samples. Second, we compute aggregates of the 
data at the peers and send these back to the query node. 
Third, we estimate the CVError of the collected sample 
and use that to estimate the additional number of peers 
that need to be visited in the second phase.  
 For improving robustness, the cross-validation 
procedure can be repeated a few times, as well as the 
average squared CVError computed. Once the first phase 
has completed, the second phase is then straightforward. 
We simply initiate a second random walk based on the 
recommendations of the first phase and compute the 
final aggregate. 
 
B. SUM and AVERAGE 
Although the algorithm has been presented for COUNT 
queries, it can be easily extended to other aggregates 
such as the SUM and AVERAGE by modifying the 
y(Curr) value specified in the algorithm. For the SUM, 
no changes are required, and for the AVERAGE, we 
calculate SUM/COUNT. 
 
Algorithm: COUNT queries 
Predefined values 
M : total number of peers in network 
E : total number of edges in network 
m : number of peers to visit in phase 1 
j : jump size for random walk 
 
Inputs 
Q : COUNT query with selection condition 
Sink : peer where query is initiated 
req : desired max error 
 
Phase 1 
// Perform random walk 
1. Curr = Sink; Hops = 1; 
2. while (Hops < j * m) { 
3. if (Hops % j) 
4.   Visit(Curr); 
5. Hops++; 
6. Curr = random adjacent peer 
7. } 
//Visit peer 
1.Visit(Curr) { 
2.  if (thresholded  Cube P is present){ 
3.    Thresholding the Data Cube P and     

            minimizing the error measures  (2.4.3) 
4.  Execute query in On-Line Phase   (2.4.4) 
5.  else 
6.     Compute  partial Sum Data Cube P (2.4.1) 
7.    Wavelet Decomposition of the Partial Sum  
            Data Cube P (2.4.2) 
8.     Thresholding the Data Cube P and  
            minimizing the error measures (2.4.3) 
9.     Execute the query in On-Line Phase (2.4.4) 
10.  } 
11. y(Curr)=result of Q 
12. Return(y(Curr), deg(Curr)) to Sink 
13.} 
 
// Cross validate at sink 
1. Let S = { s1, s2, . . . , sm } be the visited peers 
2. Partition S randomly into halves: S1 and S2 

3. Compute Y1
11 =  ; 

 Y2
11 = Where prob(s) =   ; 

4. Compute CV Error = |y1
11 – y2

11|. 

5. Return m1 = (m/2) *  

 
Phase 2 
 
1. Visit m1 peers by using random walk 
2. Let S1 = {s1, s2, . . . , sm

1} be the visited peers 

3. Return y1 =  

 
IV. EXPERIMENTAL EVALUATIONS 

A. Implementation 
Our algorithms and P2P topologies are implemented in 
Java 6.0 with the graph generation tool Jung [17] version 
2.0. Our implementation includes both sampled and real-
world Gnutella topology samples. All of our experiments 
were run on Intel Core2Duo 2.0-GHz processors with 2 
Gbytes of RAM. 
B. Input Parameters 
We evaluate the accuracy, the use of network resources, 
the size of sample acquired, and the total number of 
tuples sampled from the network. We define each of the 
user defined inputs as follows: 
1. Required Accuracy (req). This parameter defines the 
maximum allowed error for the estimated answer. 
Provided by the user for each query. 
2. Jump Size (j). This parameter defines the number of 
peers to be passed over before selecting the next peer for 
sampling. 
C. Evaluation Metrics 
      Accuracy, Performance and Efficiency  
Our algorithms are evaluated based up on their relative 
performance with other techniques, accuracy and how 
close they get to the desired accuracy. Efficiency of our 
hybrid algorithm is compared with the original 
algorithm. Here we measure the accuracy as the 
percentage of error obtained. 
D. Experiments 
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All of our results were generated from three independent 
experiments and averaged for each individual parameter 
configurations. Errors are normalized between 0 and 1. 
E. Accuracy 
Figs. 2 and 3 shows representative accuracy results on 
applying our hybrid algorithm for COUNT query using 
synthetic and real world topologies. In this case, we have 
a COUNT query whose absolute error percentage is 
noted as we vary the required accuracy. The figure 
shows that the algorithm’s result is always within the 
required 
accuracy.

 
Fig 2: Req Accuracy vs Error in synthetic topologies 

 

 
 

Fig 3: Req Accuracy vs Error in Gnutella topologies 

F. Relative performance of wavelets  
Figs. 4 and 5 show the effect of storage space on 
absolute and relative error respectively by using 
wavelets and its related methods. We can observe that 
wavelet-based histograms use less storage space at the 
same time give more accurate results than random 
sampling and traditional histogram methods.   

 
     Fig 4: Storage space vs Absolute Error  on   applying 
different  methods           

 
Fig 5: Storage space vs Relative Error on 

applying different  methods 
 

G. Comparison with Naive Techniques 
Fig. 6 compares our approach for selecting peers with 
the traditional techniques like depth-first search (DFS), 
breadth-first search (BFS) where we execute our query 
on peers selected using a random walk in the 
neighborhood of the querying peer. Note that our method 
always meets the required accuracy. Our technique 
clearly outperforms both techniques. 

 
Fig. 6. Random walks perform better than BFS and DFS  

 

 
 Fig. 7. Effect of Gossip radius with no. of adjacent rs 

on error percentage for the COUNT query. 
 

H. Efficiency of Hybrid algorithm 
Fig 7 includes the original algorithm by setting rr = 0, 
which represents the original algorithm without 
gossiping. Fig. 7 shows that as the number of edges that 
a peer randomly selects for gossiping rr and the 
maximum number of hops from pi that gossiping is 
permitted ra are increased, the accuracy of the results 
increases steadily and that rr and ra are increased, the 
accuracy increases for the hybrid algorithm, obtaining 
lower error percentage as compared to the original 
algorithm. 
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V. CONCLUSION 
In this paper, we present adaptive sampling-based 
techniques for the approximate answering of ad hoc 
aggregation queries in P2P databases. Our approach 
requires a minimal number of messages sent over the 
network and provides tunable parameters to maximize 
performance for various network topologies.  
We present an I/O-efficient technique based upon a 
multi resolution wavelet decomposition that yields an 
approximate and space-efficient representation of the 
data cube. We get excellent approximations for on-line 
range-sum queries with limited space usage and 
computational cost. One drawback of our current 
approach is that the construction of the wavelet 
decomposition is performed on the dense data cube, 
which may be very large. Thus to reduce the I/O cost in 
constructing the compact data cube, the partial sum data 
cube can be implicitly represented in a more compressed 
form, and some sparse techniques may be used to reduce 
the I/O in computing the wavelet decomposition. 
Our approach provides a powerful technique for 
approximating range aggregates of various topologies 
and data clustering but comes with limitations based 
upon a given topologies structure and connectivity. For 
topologies with very distinct clusters of peers (small cut 
size), it becomes increasingly difficult to quickly reach 
all clusters. This can be resolved by increasing the jump 
size, allowing a larger number of peers to be considered 
and increasing the allowed mixing by our hybrid 
approach. 
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