

An Approach of Cryptography for Web User
Authentication using Secure Remote Password Protocol

 Revati Raman Dewangan,
MPCCET, Bhilai (CG)
revati2004@gmail.com

Vivek Parganiha,
MPCCET, Bhilai (CG)

 vivekparganiha@gmail.com

Deepali Thombre,
SSCET, Bhilai (CG)

 deepthombre@gmail.com

Abstract - This research paper describes generation of a
crypt key for user of web application using SRP techniques
for the purpose of secure authentication in web. A numbers
of web sites offer different kinds of users in world wide to
access web application using unique user name and
corresponding a password for securing them to others, even
though they are now hacked by professional hackers. To
avoid this kind of hacking of user’s accounts; our approach
is to provide a secure cryptography key using the techniques
SRP (SRP-6) along with their username and password. This
key will be unique for a particular user. Whenever user
attempts to login the web application a new unique key will
be generated by the application in each an every single
attempt then the newly generated key will be validated by
server side.
In many web applications, it is desirable to have users log in
by giving some unique login name and a password before
accessing pages. There are many ways to implement this,
each with different advantages and disadvantages. The
considerations involved are complex enough and the
majority of authentication systems in use on the web today
have at least some fixable security weaknesses. There are
two standard authentication systems which are described in
the HTTP protocol documents: "basic authentication"
which is supported by most browsers and HTTP servers,
and "digest authentication" which isn't. The Secure Remote
Password (SRP) protocol is an implementation of a public
key exchange handshake described in the Internet standards
working group request for comments 2945(RFC2945). This
mechanism is suitable for negotiating secure connections
using a user-supplied password, while eliminating the
security problems traditionally associated with reusable
passwords. This system also performs a secure key exchange
in the process of authentication, allowing security layers
(privacy and/or integrity protection) to be enabled during
the session. Trusted key servers and certificate
infrastructures are not required, and clients are not
required to store or manage any long-term keys.

Index Terms— Web Application authentication, RFC2945,
HTTP server, Secure Remote Password (SRP) protocol,
integrity protection.

I. INTRODUCTION

In many web applications, it is desirable to have users log
in by giving some unique login name and a password
before accessing pages [1]. There are many ways to
implement this, each with different advantages and
disadvantages. The considerations involved are complex
enough that I'd guess that the majority of authentication
systems in use on the web today have at least some
fixable security weaknesses. In the HTTP protocol
documents: "basic authentication" which is supported by
most browsers and HTTP servers, and "digest
authentication" which isn't. I will then discuss various
"do-it-yourself" alternatives to basic authentication,
focusing on the three basic phases to the web
authentication process:
1. Logging in: The user must be prompted for a login

and password. Some program on the server must
check these against a database to confirm that they
are valid.

2. User Tracking: Normally there is no persistent
connection between a user's browser and and your
web server. If the web-site consists of more than one
page, and if you don't want the user to have to log in
again for each new page he looks at, we need some
way to preserve the login information from page to
page.

3. Logging Off: If we have a way to remember that a
user is logged on, we also need a way to destroy that
information when the user logs off.

Several commonly used server-side web development
packages (such as Microsoft's Active Server Pages,
Allaire's Cold Fusion, or Apache's Tomcat server) have
authentication systems built in.
Authentication, authorization, and accounting (AAA)
is a term for a framework for intelligently controlling
access to computer resources, enforcing policies, auditing
usage, and providing the information necessary to bill for
services. These combined processes are considered
important for effective network management and security.

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

823

As the first process, authentication provides a way of
identifying a user, typically by having the user enter a
valid user name and valid password before access is
granted. The process of authentication is based on each
user having a unique set of criteria for gaining access.
The AAA server compares a user's authentication
credentials with other user credentials stored in a
database. If the credentials match, the user is granted
access to the network. If the credentials are at variance,
authentication fails and network access is denied.
Following authentication, a user must gain authorization
for doing certain tasks. After logging into a system, for
instance, the user may try to issue commands. The
authorization process determines whether the user has the
authority to issue such commands. Simply put,
authorization is the process of enforcing policies:
determining what types or qualities of activities,
resources, or services a user is permitted. Usually,
authorization occurs within the context of authentication.
Once you have authenticated a user, they may be
authorized for different types of access or activity.
The final plank in the AAA framework is accounting,
which measures the resources a user consumes during
access. This can include the amount of system time or the
amount of data a user has sent and/or received during a
session. Accounting is carried out by logging of session
statistics and usage information and is used for
authorization control, billing, trend analysis, resource
utilization, and capacity planning activities.
Authentication, authorization, and accounting services are
often provided by a dedicated AAA server, a program
that performs these functions. A current standard by
which network access servers interface with the AAA
server is the Remote Authentication Dial-In User Service
(RADIUS).
i. Basic Authentication
To use basic authentication, you must configure your
HTTP server daemon to know that certain documents
require authentication to access[2]. First, all documents to
which access is to be restricted are placed in some
common directory under your server's document root.
That directory (and all beneath it) can be configured
either by placing commands in a file named .htaccess that
resides in that directory, or by placing the same
commands in an appropriate <Directory> block in the
global configuration file. The directives will be the same
in either case, giving at least the following information:
 Authorization Realm Name - Some label which

identifies which service this authorization is for.
 User Database Name - These describes where the

database of valid users and user passwords is stored.
(IMPORTANT: It should not be stored anywhere
under the server's document root, since any data there
could possibly be viewed by the user, and you don't
want people viewing your password database).

 Restricted Operation - A list of which kinds of
HTTP transactions authentication is required for.

ii. Digest Authentication
Digest authentication was added to the HTTP standard to
provide a method of authenticating users without sending
passwords over the network in clear text. This fixes the
major security weakness in basic authentication.
Digest authentication, however, has only recently been
beginning to catch on. Apache's web server has long
included support for it, but until recently the only browser
that implemented it was W3C's reference browser,
Amaya. Now support for it has appeared in Internet
Explorer 5.0, Mozilla 1.9.7, Netscape 7, Opera 4.0, and
Safari 1.0. That's pretty much all current browsers.
Microsoft's IIS 5.0 server also supports it.
For the most part, digest authentication works just like
basic authentication. The browser requests a page, which
is rejected. But the rejection message is a bit different, in
that it says a digest authentication is required and also
gives a string called a "nonce," which is some string
(generally based on the time of day and the IP address of
the requester) which is different for each request made.
As with basic authentication, the browser gets a password
(either from the user or from its cache memory) Instead of
just sending that information, the browser does the
following:
1. Concatenates the user name, the authentication realm

name and the password, and then computes an MD5
checksum of that whole string.

2. Concatenates the URL requested and the method for
the request, and then computes an MD5 checksum of
that string.

3. Concatenates the two previous checksums with the
"nonce" string supplied by the server, and then
computes an third MD5 checksum of that string.

The checksum resulting from the last step is sent with the
request for the new page, as are the clear text of the login
name and the nonce value.
Note* The MD5 Message-Digest Algorithm is a widely used
cryptographic hash function that produces a 128-bit (16-byte)
hash value. Specified in RFC 1321, MD5 has been employed in
a wide variety of security applications, and is also commonly
used to check data integrity.

II. CRYPTOGRAPHY

Cryptography is the science of secret writing. It's a
branch of mathematics, part of cryptology. Cryptology
has one other child, cryptanalysis, which is the science of
breaking (analyzing) Cryptography [3].
The main security concerns of applications are addressed
by cryptography. First, applications need assurance that
users are who they say they are. Proving identity is called
authentication. In the physical world, a driver's license is
a kind of authentication. When you use a computer, you
usually use a name and password to authenticate yourself.
Cryptography provides stronger methods of
authentication, called signatures and certificates[4].

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

824

Computer applications need to protect their data from
unauthorized access. You don't want people snooping on
your data (you want confidentiality), and you don't want
someone changing data without your knowledge (you
want to be assured of your data's integrity). Data stored
on a disk, for example, may be vulnerable to being
viewed or stolen. Data transmitted across a network is
subject to all sorts of nefarious attacks. Again,
cryptography provides solutions.

So what can you do with cryptography? Plenty. See
Figure 1.

Figure 1. Cryptography

Here are just a few examples:
Secure network communications
Cryptography can protect your data from thieves and
impostors. Most web browsers now support SSL , a
cryptographic protocol that encrypts information before it
is transmitted over the Internet. SSL allows you to buy
things, using your credit card number, without worrying
too much that the number will be stolen.
Secure hard disk
You can encrypt the files on your hard disk so that even if
your enemies gain physical access to Your computer, they
won't be able to access its data.
Secure email
Email is notoriously easy to steal and easy to forge.
Cryptography can make it hard to forge e-mail and hard
to read other people's messages. Although cryptography
is heavily mathematical, there isn't much math in this
book. One of the really nice things about the Java
Security API is that, like any good software library, it
hides a lot of complexity.
The Security API exposes concepts, like Signature and
Cipher, and quietly deals with the underlying details. You
can use cryptography effectively in a Java application
without knowing too much about what's going on
underneath the hood. Of course, this implies you need to
trust Sun to write the Security API correctly.

III. TYPES OF CRYPTOGRAPHY
There are several ways of classifying cryptographic
algorithms. For purposes of this paper, they will be
categorized based on the number of keys that are
employed for encryption and decryption, and further
defined by their application and use [9]. The three types
of algorithms that will be discussed are (Figure 2):

 Secret Key Cryptography (SKC): Uses a single
key for both encryption and decryption

 Public Key Cryptography (PKC): Uses one key
for encryption and another for decryption.

 Hash Functions: Uses a mathematical
transformation to irreversibly "encrypt"
information.

Figure 2. Types of cryptography: secret-key, public

key, and hash function.

1) Secret Key Cryptography
With secret key cryptography, a single key is used for
both encryption and decryption. As shown in Figure 2 A,
the sender uses the key (or some set of rules) to encrypt
the plaintext and sends the ciphertext to the receiver. The
receiver applies the same key (or ruleset) to decrypt the
message and recover the plaintext. Because a single key is
used for both functions, secret key cryptography is also
called symmetric encryption.
Secret key cryptography schemes are generally
categorized as being either stream ciphers or block
ciphers. Stream ciphers operate on a single bit (byte or
computer word) at a time and implement some form of
feedback mechanism so that the key is constantly
changing. A block cipher is so-called because the scheme
encrypts one block of data at a time using the same key
on each block. In general, the same plaintext block will
always encrypt to the same ciphertext when using the
same key in a block cipher whereas the same plaintext
will encrypt to different ciphertext in a stream cipher.

2) Public-Key Cryptography
Public-key cryptography has been said to be the most
significant new development in cryptography in the last
300-400 years. Modern PKC was first described publicly
by Stanford University professor Martin Hellman and
graduate student Whitfield Diffie in 1976. Their paper
described a two-key crypto system in which two parties
could engage in a secure communication over a non-
secure communications channel without having to share a
secret key.
PKC depends upon the existence of so-called one-way
functions, or mathematical functions that are easy to

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

825

computer whereas their inverse function is relatively
difficult to compute. Let me give you two simple
examples:
1. Multiplication vs. factorization: Suppose I tell you that

I have two numbers, 9 and 16, and that I want to
calculate the product; it should take almost no time to
calculate the product, 144. Suppose instead that I tell
you that I have a number, 144, and I need you tell me
which pair of integers I multiplied together to obtain
that number. You will eventually come up with the
solution but whereas calculating the product took
milliseconds, factoring will take longer because you
first need to find the 8 pairs of integer factors and then
determine which one is the correct pair.

2. Exponentiation vs. logarithms: Suppose I tell you that I
want to take the number 3 to the 6th power; again, it is
easy to calculate 36=729. But if I tell you that I have the
number 729 and want you to tell me the two integers
that I used, x and y so that logx 729 = y, it will take you
longer to find all possible solutions and select the pair
that I used.

3) Hash Functions
Hash functions, also called message digests and one-way
encryption, are algorithms that, in some sense, use no key
(Figure 2C). Instead, a fixed-length hash value is
computed based upon the plaintext that makes it
impossible for either the contents or length of the
plaintext to be recovered. Hash algorithms are typically
used to provide a digital fingerprint of a file's contents,
often used to ensure that the file has not been altered by
an intruder or virus. Hash functions are also commonly
employed by many operating systems to encrypt
passwords. Hash functions, then, provide a measure of the
integrity of a file.
Hash algorithms that are in common use today include:
 Message Digest (MD) algorithms: A series of byte-

oriented algorithms that produce a 128-bit hash value
from an arbitrary-length message.

o MD2 (RFC 1319): Designed for systems with
limited memory, such as smart cards. (MD2 has
been relegated to historical status, per RFC 6149.)

o MD4 (RFC 1320): Developed by Rivest, similar
to MD2 but designed specifically for fast
processing in software. (MD4 has been relegated
to historical status, per RFC 6150.)

o MD5 (RFC 1321): Also developed by Rivest after
potential weaknesses were reported in MD4; this
scheme is similar to MD4 but is slower because
more manipulation is made to the original data.
MD5 has been implemented in a large number of
products although several weaknesses in the
algorithm were demonstrated by German
cryptographer Hans Dobbertin in 1996
("Cryptanalysis of MD5 Compress").

 Secure Hash Algorithm (SHA): Algorithm for NIST's
Secure Hash Standard (SHS). SHA-1 produces a 160-
bit hash value and was originally published as FIPS

180-1 and RFC 3174. FIPS 180-2 (aka SHA-2)
describes five algorithms in the SHS: SHA-1 plus
SHA-224, SHA-256, SHA-384, and SHA-512 which
can produce hash values that are 224, 256, 384, or 512
bits in length, respectively. SHA-224, -256, -384, and -
512 are also described in RFC 4634.

 RIPEMD: A series of message digests that initially
came from the RIPE (RACE Integrity Primitives
Evaluation) project. RIPEMD-160 was designed by
Hans Dobbertin, Antoon Bosselaers, and Bart Preneel,
and optimized for 32-bit processors to replace the then-
current 128-bit hash functions. Other versions include
RIPEMD-256, RIPEMD-320, and RIPEMD-128.

 HAVAL (HAsh of VAriable Length): Designed by Y.
Zheng, J. Pieprzyk and J. Seberry, a hash algorithm
with many levels of security. HAVAL can create hash
values that are 128, 160, 192, 224, or 256 bits in length.

 Whirlpool: A relatively new hash function, designed by
V. Rijmen and P.S.L.M. Barreto. Whirlpool operates on
messages less than 2256 bits in length, and produces a
message digest of 512 bits. The design of this has
function is very different than that of MD5 and SHA-1,
making it immune to the same attacks as on those
hashes (see below).

 Tiger: Designed by Ross Anderson and Eli Biham,
Tiger is designed to be secure, run efficiently on 64-bit
processors, and easily replace MD4, MD5, SHA and
SHA-1 in other applications. Tiger/192 produces a 192-
bit output and is compatible with 64-bit architectures;
Tiger/128 and Tiger/160 produce a hash of length 128
and 160 bits, respectively, to provide compatibility with
the other hash functions mentioned above.

IV. SECURE REMOTE PASSWORD PROTOCOL.

Secure Remote Password (SRP) is an ingenious
authentication method where the password remains
private to the user at all times and never has to be
communicated beyond their computer; instead, what
client and server exchange is a series of cryptographically
secured messages. The Secure Remote Password protocol
performs secure remote authentication of short human
memorizable passwords and resists both passive and
active network attacks. Because SRP offers this unique
combination of password security, user convenience, and
freedom from restrictive licenses, it is the most widely
standardized protocol of its type, and as a result is being
used by organizations both large and small, commercial
and open-source, to secure nearly every type of human-
authenticated network traffic on a variety of computing
platforms.
Merits of the SRP protocol:

 Zero-knowledge password proof - the password
remains private to the user at all times and is
never shared with the authenticating server.

 Resistant to eavesdropping and man-in-the-
middle attacks.

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

826

 Good resistance to offline dictionary attacks in
case the server is compromised.

 May be used for mutual authentication and to
establish a secret session key for encrypted
communication.

 A mutually trusted third party is not required.
The Secure Remote Password protocol was devised by
Tom Wu[7] during his work at Stanford University.
What is SRP?
SRP is a secure password-based authentication and key-
exchange protocol. It solves the problem of authenticating
clients to servers securely, in cases where the user of the
client software must memorize a small secret (like a
password) and carries no other secret information, and
where the server carries a verifier for each user, which
allows it to authenticate the client but which, if
compromised, would not allow the attacker to
impersonate the client. In addition, SRP exchanges a
cryptographically-strong secret as a byproduct of
successful authentication, which enables the two parties
to communicate securely.
Many password authentication solutions claim to solve
this exact problem, and new ones are constantly being
proposed. Although one can claim security by devising a
protocol that avoids sending the plaintext password
unencrypted, it is much more difficult to devise a protocol
that remains secure when:

 Attackers have complete knowledge of the
protocol.

 Attackers have access to a large dictionary of
commonly used passwords.

 Attackers can eavesdrop on all communications
between client and server.

 Attackers can intercept, modify, and forge
arbitrary messages between client and server.

 A mutually trusted third party is not available.
The idea behind SRP first appeared on USENET in late
1996, and subsequent discussion led to refined proposals
in 1997 to address these security properties. This lead to
the development of one of the variants of the protocol still
in use today, known as SRP-3, which was published in
1998 after several rounds of discussion and refinement on
cryptography-related newsgroups and mailing lists, and
has withstood considerable public analysis and scrutiny
since then. The technology evolved into a newer variant
known as SRP-6, which maintains the security of SRP-3
but has refinements that make it more flexible and easier
to incorporate into existing systems. Technical details of
the actual protocol design are available from this site [10].
Competitive Analysis of SRP
This section lists some of the more popular authentication
products and analyzes how their security compares to
strong password mechanisms like SRP and, in some
cases, how SRP can be used to add password security to
existing infrastructures.

1. Multifactor Authentication
The strongest forms of authentication involve the
combination of more than one authentication factor:

 What you know: Passwords, passphrases
 What you have: Hardware tokens, private keys
 What you are: Biometrics

When combined properly, these techniques force an
intruder to compromise several factors before being able
to mount a meaningful attack.
 Cryptographic smart cards - These are physical tokens
that contain a CPU and enough memory to store private
keys and perform cryptographic operations like digital
signatures with them. They are usually PIN-protected and
offer some form of hardware-based tamper-resistance,
which is supposed to make them useless without the
human-memorized PIN.
Under the right circumstances, they offer a high degree of
security. They are also expensive to issue, require the
installation of special card readers, and are difficult to
deploy on a large scale, which has been an impediment to
their adoption, especially in the United States.
Arcot authentication - Arcot Systems offers a software-
based alternative to hardware authentication tokens that
bypasses many of the limitations faced by smart cards
while maintaining the security properties of a multifactor
system. By using a technique known as cryptographic
camouflage, Arcot can store tokens entirely in software
and protect them from brute force attack, a problem that
plagues other software-based solutions.
2. Strong Password Authentication
Although most strong password systems are single-factor
systems, they can be combined with an additional factor,
like a software or hardware token, to construct a
multifactor system. What distinguishes strong password
systems from other, weaker one-factor methods is the
level of security that they leverage from that one factor. A
strong password system protects even low-entropy
("guessable") passwords from off-line attack, even
against adversaries with complete access to the network.
They also exchange a session key to enable both data
confidentiality and integrity after authentication has been
confirmed.
EKE, SPEKE - EKE, or Encrypted Key Exchange, was
developed by Bellovin & Merritt in 1992, and is one of
the earliest examples of secure password technology.
David Jablon invented SPEKE (Strong Password
Exponential Key Exchange) in 1996, as well as a
variable-modulus variant of SPEKE while some people
also refer to as PDM. Both EKE and SPEKE passwords
that are "plaintext-equivalent" to the real password, which
means that an intruder who breaks into a server protected
by EKE or SPEKE and captures the password database
would subsequently be able to impersonate all the users
on the system. EKE and SPEKE have variants that guard
against this attack, but only with a significant
performance loss.

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

827

AMP, SNAPI, AuthA, OKE, etc. - The current groundswell
of interest in password authentication technology has
spurred a large number of proposals for new
authentication protocols, all offering different
combinations of security, performance, and license
availability. Standards bodies like the IEEE P1363
working group have formed entire study groups to help
sort out the veritable alphabet soup that has resulted.
3. Pseudo-Strong Authentication
This category of methods is called "pseudo-strong"
because while they are better than plaintext passwords,
they have also have some well-known security problems
that make them vulnerable in real-world deployments.
Another distinguishing characteristic of these methods is
that they inhabit the "no-man's land" of the technology
quadrant: There are methods out there that offer better
security while being equally easy to use, and there are
also methods out there that are equally strong yet easier to
use. It should therefore come as no surprise that SRP-
based variants of these methods are quickly coming to
market, since they preserve the ease-of-use that makes
products based on these methods easy to deploy and use,
while offering better security against well-known attacks.
SSH Public Key Authentication - SSH, or "Secure Shell",
is a protocol that uses various key exchange methods to
encrypt session traffic for remote logins and TCP/IP port
forwarding. Although it uses well-known algorithms to
perform both session key establishment and session
encryption, its security is heavily dependent on the
security of the method used to authenticate the user. In
many cases, the user authentication method is the weak
link in the chain.
SSH Public Key Authentication is similar to Client-side
SSL Certificate Authentication, as it shares the same
vulnerability to a stolen-credential attack, and it also has
the same difficulties in coping with roaming users, who
frequently must log in from different locations. Some
implementations of SSH allow the private key to be
stored in hardware, which improves security in exchange
for more deployment obstacles.
SSH Password Authentication - Nearly all implementations
of SSH support what is known as "Password
Authentication", in which the client sends its password
directly to the server, hoping that the encrypted
connection will protect it in transit. The security of this
method is highly dependent on the particular method of
server authentication being used. Keep in mind that an
attacker who successfully bypasses server authentication
in this case gets the plaintext passwords of any users who
subsequently attempts to log in, and can do so
undetectably.
One commonly-used method of server authentication is
"ad-hoc" distribution of server public keys. The server
sends the client its (non-certified) public host key, and the
client uses this to encrypt a session key and send it to the
server. The actual protocol is slightly more complicated,
but what matters is that the client has no way of knowing

if the host public key it received was in fact the right one,
which makes this protocol susceptible to Man In The
Middle (MITM) attacks in practice. Although the client
tries to keep track of previously-received host keys, there
is no way for it to know if a change in host keys is
legitimate or the beginning of an attack, so users will in
most cases either ignore the warning that SSH spits out or
inundate the help desk (if there is one) every time a host
key expires or the network configuration changes for any
reason.
Some versions of SSH support PKI-based distribution of
host keys, which improves the security of server
authentication, but then requires the deployment of a PKI.
Sites must then purchase server certificates from third
parties like VeriSign or Thawte, or they must install and
administer their own certification authorities. In any case,
strengthening server authentication doesn't address the
real problem with password authentication, which is that
the user's password is being sent out in a reversibly-
encrypted form.
Password-protected Client-side SSL/TLS Certificates - To
initiate a conventional, server-authenticated SSL
connection, a Web server provides a certificate from a
well-known CA (Certificate Authority), which the Web
browser can verify. SSL also provides a mode in which
the client can send a certificate to the Web server, which
can verify it and use its contents to authenticate the client.
The corresponding private key, which resides on the
user's PC, is protected with a passphrase. An attacker who
captures this encrypted private key can brute-force the
passphrase to obtain the private key and impersonate the
user, which is the same problem that affects SSH Public
Key Authentication. Likewise, it is possible to store these
private keys in hardware tokens, which trades off security
for convenience.
Default Preauthentication in Kerberos V5 - To fix the
password security weaknesses in Kerberos V4, version 5
added preauthentication, which forces a client to prove
knowledge of his password before the server starts an
authentication session. The default form of
preauthentication Kerberos V5 is an encrypted timestamp:
The user converts his password into an encryption key,
which the encrypts a binary representation of the current
time. If the server is able to decrypt the client's message
and obtain a timestamp within a given window,
authentication proceeds. Unfortunately, an attacker who
intercepts this message can perform an off-line brute-
force attack against this message and obtain the user's
password.
4. Weak Authentication
Although it would be nice to be able to say that weak
authentication methods are mentioned here for historical
interest, the truth is that an embarrassingly large amount
of Internet traffic is secured with these legacy
technologies. In some cases, there is a legitimate reason
for making these choices - a common reason is that the

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

828

authentication must work without installing additional
client software.
Unfortunately, users of these systems ultimately sacrifice
security for the convenience of backward-compatibility.
If it is necessary to settle for the lowest common
denominator to satisfy all users, then it is in all users' best
interests to raise that lowest common denominator to
support a level of security that includes strong password
authentication. The "worst offenders", in no particular
order:

 Clear text passwords (unsecured telnet, rlogin)
 Encoded passwords (HTTP Basic

Authentication)
 Classic challenge-response protocols (HTTP

Digest Authentication, Windows NTLM
Authentication, APOP, CRAM, CHAP, etc.)

 One-Time Password schemes based on a
memorizable secret (S/Key, OPIE)

 Kerberos V4.
V. CONCEPT OF SRP FOR SECURING THE CONNECTION
Goals: To secure against [11]
1. Passive adversary
2. Active adversary (they cannot recover the password)
3. Adversary cannot do an offline dictionary attack to

recover password.
4. Adversary with access to server’s DB cannot recover

the password.
How are passwords stored inside a computer? See Table 1.
Table 1 How are password Stored inside a computer.

ID, PASS
ID PASS

REV HASH(PASS)

ALICE HASH(PASS)

But if we assume there are 1,000,000 distinct password
combinations, then the attacker with access to a computer,
can create a hash of all the password’s and use it to attack
this computer. Worse yet, he can attack any other
computer which uses the same hash function, like same
OS.
Solution for the above problem:
Use a random salt (128-bit number) in addition to the
hash. Having a user-wise Salt, will require an attacker to
generate a per-user/per-machine dictionary attack to crack
the password. See Table 2.
Table 2 Using a salt

ID,
PASS ID PASS

REV S,HASH(S,PASS)

ALICE S,HASH(S,PASS)

Secure Remote Password Protocol

 Global Parameters
I. N – large prime

II. Base g
III. Parameter k = 3 (for which discrete log is not

known) see Table 3 and Table 4

Table 3. Registration Phase

 USER

CLIENT SERVER

ID,PASS

 PICK A RANDOM S.
 X=HASH(S,PASS)
 V= MOD N

ID,S,V

ID PASS

ID S,V

Table 4 Login Phase

USER CLIENT SERVER

ID,PASS

 PICK A RANDOM ‘A’

Α = MOD N
X= H(S,PASS)
U= H(Α,Β)

S=
K=H(S)

ID, Α
 PICK A RANDOM ‘B’
 LOOKUP ID FROM

 TABLE AND
 COMPUTE

Β = KV+ MOD N
S, Β

S=
K=H(S)

An Example wrong mutual authentication phase sees
Table 5
Table 5 wrong mutual authentication

USER CLIENT SERVER

 HELLO,

MAC(K, “HELLO”)

Problem: attacker who just knows id, can send (id, α) and
can do the offline dictionary attack on the
“Hello” message, verifying MAC.The actual problem is
server authenticates first after the shared key.
Solution: Have client authenticate first with the shared
key. See table 6. Now they share a key K, which can be
used for an IND-CCA2 encryption scheme. How Keys
Match?see Table 7
Adversary Advantages and Attempt to Break
1) Attacker impersonating as client
In the “s , β” step, he needs to solve discrete log and get
the random number b. But as β is randomly distributed, he
needs to check with the server by sending M1, if it is
correct. He has

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

829

only one chance to guess the password and the hash and
verify in a single interaction. He cannot do an offline
dictionary attack.
 Table 6 Client authentication

USER CLIENT SERVER

 M1= H(H(ID)||S||

 M2=

Α||Β||K)

H(Α||M1||K)

Table 7 Key Match

2) Attacker impersonating as Server
The attacker can send a guess of V as “s , β”. (The salt s
can be obtained by impersonating as client from the
actual server).Now, Still he has only one guess to
generate V, as there is only one chance for verifying M1

Table 8 Attacker impersonating as Server

3) Man-In-Middle attack
Say the Attacker is acting as MIM and intercepting
communication and impersonating the client to server and
server to client, then he either need to guess a from α or
guess b from β. Both of this requires solving discrete log
problem.
Note * This was the over all concept of the SRP.

VI. CONCLUSION

Till the end of the chapter V we discussed the various
aspect and different scenario of security, security threats
and solution goal of security. We also discussed the
technology to avoid the hacking by professional hacker. It
was our literature paper, in our next paper we are going to
implement a web based application, In which the newly
key will generated each attempt using cryptography with
SRP method and this key along with the password will
validated by the server side application.

REFERENCES
[1]http://tldp.org/HOWTO/Secure-Programs-HOWTO/web-

authentication.html
[2] http://unixpapa.com/auth/
[3] http://www.cacr.math.uwaterloo.ca/hac/
[4] C. ADAMS AND H. MEIJER, “Security related comm.- ents

regarding McEliece’s public-key cryptosystem”, Advan-ces in
Cryptology–CRYPTO ’87 (LNCS 293), 224–228, 1988.

[5] S. BERKOVITS, “How to broadcast a secret”, Advances in
Cryptology–EUROCRYPT ’91 (LNCS 547), 535–541,1991.

[6] N. Haller and R. Atkinson. On Internet Authentication. Naval
Research Laboratory, October 1994. Request For Comments
(RFC) 1704.

[7] The Secure Remote Password Protocol, Thomas Wu, Computer
Science Department Stanford University.

[8] R.H. Morris and K. Thompson. Unix password security.
Communications of the ACM,22(11):594, November 1979.

[9] www.giac.org/cissp-papers/57.pdf
[10] http://software.dzhuvinov.com/nimbus-srp.html
[11] M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension

of encrypted key exchange. ACM Operating systems Review,
29(3), July 1995

[12] The law of cryptography with java code by Neal R. Wagner.
[13] A. Menezes and S.A. Vanstone. Elliptic curve

cryptosystems and their implementations. Journal of Cryptology,
6(4):209{224, 1993.

[14] N. Haller and R. Atkinson. On Internet Authentication. Naval
Research Laboratory, October 1994. Request For Comments
(RFC) 1704.

[15] S.C. Pohling and M.E. Hellman. An improved algorithm for
computing logarithms in gf(p) and its cryptographic signi_cance.
IEEE Transactions on Information Theory, 24(1):106{111, January
1978.

[16] security engineering: a guide to building dependable distributed
systems by zhqm zmgm zmfm g. julius caesar xyawo gaooa gpemo
hpqcw ipnlg rpixl txloa nnycs yxboy mnbin yobty qynai john f.
kennedy

[17] Lecture Notes on Cryptography by Shafi Goldwasser and Mihir
Bellare.

Revati Raman Dewangan et al IJCSET |January 2012| Vol 2, Issue 1,823-830

830

