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Abstract— Semantic search on databases often return a large 
number of results, only a small subset of which is relevant to the 
user. We present a semantic search technique considering the 
type of desired Web resources and the semantic relationships 
between the resources and the query keywords Ranking and 
categorization, which can also be combined, to alleviate this 
information overload problem. Results refinement for databases 
is the focus of this work. A novel search interface that enables 
the user to navigate large number of query results using the 
Pattern recognition. First, the query results are matched with 
the key word using full Pattern matching. In contrast, previous 
works expand the hierarchy in a predefined static manner, 
without navigation refinement modeling. We show that the 
problem of selecting the best concepts to reveal at each 
refinement and propose an efficient Pattern matching 
algorithm. We show experimentally that how results are refined 
using full Pattern matching at first level and half pattern 
matching at second level  
 
Keywords: Indexing, Location monitoring, Optimal String 
matching, Pattern matching, Search process, Semantic Search                      

 
I. INTRODUCTION 

     Search has many parameters and it is, of course, necessary 
to set up a few of them with independent data in order to 
reduce the number of degrees of freedom in the model. The 
main interest of the model is in the interaction between 
pattern recognition and search. Semantic search seeks to 
improve search accuracy by understanding searcher intent 
and the contextual meaning of terms as they appear in the 
searchable data space, whether on the Web or within a closed 
system to generate more relevant results. To address the 
scalability issue in a large, distributed and dynamic setting 
such as the Semantic (Web), it is often desirable to identify 
which sources might be potentially relevant to a query before 
these sources are accessed. We consider an approach for 
identifying the minimal set of potentially relevant Semantic 
Web data sources for a given query. In our framework, a 
Potentially Relevant data source can make assertions about its 
content’s relevance by means of REL statements. A data 
source provider can use REL statements to summarize the 
contents of a data source in terms of classes whose instances 
the data source has information about and the properties used 
to relate them. REL statements allow us to develop 
algorithms to choose data sources that may be relevant to a 

query and ignore sources that are definitely irrelevant. 
Semantic search systems consider various points including 
context of search, location, intent, and variation of words, 
synonyms, generalized and specialized queries, concept 
matching and natural language queries to provide relevant 
search results. Two major forms of search: navigational and 
research. In navigational search, the user is using the search 
engine as a navigation tool to navigate to a particular 
intended document. Rather than using ranking algorithms 
such as Google's Page Rank to predict relevancy, semantic 
search uses semantics, or the science of meaning in language, 
to produce highly relevant search results. In most cases the 
information queried by a user rather than have a user sort 
through a list of loosely related keyword results. 
The size of the query result makes it difficult for the user to 
find the citations that the user is most interested in, and a 
large amount of effort is expended searching for these results.  
In recent years, many researchers have worked on how to 
apply the methodology of classification to semantic search 
for acquiring the optimization of search. Theoretically at 
least, such a search engine could offer advanced querying and 
browsing of structured data with search results automatically 
aggregated from multiple documents and rendered directly in 
a clean and consistent user-interface, thus reducing the 
manual effort required of its users. Indeed, there has been 
much research devoted to this topic, with various incarnations 
of (mostly academic) RDF-centric Web search engines 
emerging. 
Many solutions have been proposed to address this 
problem—commonly referred to as information overload [1], 
[2], These approaches can be broadly classified into two 
classes: ranking and categorization—which can also be 
combined. Ranking presents the user with a list of results 
ordered by some metric of relevance [9] or by content 
similarity to a result or a set of results. In categorization [1], 
[2], [3], query results are grouped based on hierarchies, 
keywords, tags, or attribute values. User studies have 
demonstrated the usefulness of categorization in finding 
relevant results of exploratory queries [12]. While ranked 
results are useful when the ranking function is aligned with 
user preferences or the result list is small in size, 
categorization is generally employed by users when ranking 
fails or the query is too “broad” [12].Which rely on the 
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detection of certain patterns in web content that could 
potentially be harmful. There are many existing string 
matching algorithms, such as SBOM (Set Backward Oracle 
Matching) [3], Aho- Corasick [4], Set Horspool [5], Wu-
Manber [6], SOG [7], etc. These matching algorithms are 
classified into two categories: prefix matching and suffix 
matching. In general, suffix matching is faster and more 
effective in handling long patterns than prefix matching; thus, 
it is used more widely.  
 

II. RELATED WORK  
The MEDLINE database, on which the Pub Med search 
engine operates, contains over 18 million citations and is 
currently growing at the rate of 500,000 new citations each 
year Other biological sources, such as Entrez Gene and 
OMIM witness similar growth. As claimed in previous work 
the ability to rapidly survey this literature constitutes a 
necessary step toward both the design and the interpretation 
of any large-scale experiment. Biologists, chemists, medical 
and health scientists are used to searching their domain 
literature—such as Pub Med—using a keyword search 
interface. Here, query language is based on the conjunctive 
query language for DLs that has been proposed by Horrocks 
et al.. This query language overcomes the inadequacy of 
description logic languages in forming extensional queries. 
Furthermore, it corresponds to the most common SPARQL 
queries. We refer to the left hand side of :- as the head of the 
query and the right hand side as the body of the query. The 
variables that appear in the head must appear also in the body 
and are universally quantified. Such variables are called 
distinguished variables and describe the form of a query’s 
answers. All other variables in the query are called non-
distinguished variables and are existentially quantified. For a 
given query Q and substitution θ, we use Q θ as a shorthand 
for B1θ ^ B2 θ . . .^ Bn θ. 
Currently, in an exploratory scenario where the user tries to 
find citations relevant to her line of research and hence not 
known a priori, she submits an initially broad keyword-based 
query that typically returns a large number of results. 
Subsequently, the user iteratively refines the query, if she has 
an idea of how to, by adding more keywords, and resubmits 
it, until a relatively small number of results are returned. 
Haase and Motik [6] have described a mapping system for 
OWL and proposed a query answering algorithm. They 
identify a mapping language that is similar to ours. However, 
as their language adds rules to OWL, it is undesirable and as 
such they need to introduce restrictions to achieve 
decidability. Our language, on the other hand, is a sub 
language of a decidable language. Furthermore, similar to the 
DRAGO approach, Haase and Motik do not rely on an 
explicit reformulation step and process all the maps for a 
query reformulation. Peer-to-peer systems like Bibster [2] 
and Some Where have shown promises in providing query 
answering solutions for the Semantic Web. However, a peer-
to-peer system needs special software installed at every 
server. Our system on the other hand makes use of the 
existing infrastructure of the Web. A recent work by Liarou 

et al. [11] uses Distributed Hash Tables (DHT) to index and 
locate relevant RDF data sources. However, they do not 
address the schema mapping issue and therefore work on a 
single ontology environment. Furthermore, DHTs are 
targeted for a more P2P architecture as opposed to client 
server web architecture. 

2.1Commonly used searching methodologies 

The annotation process can be generally divided into two 
steps. The first is to establish mappings between existing 
Semantic Web terms and those needs to be annotated in data. 
The second step is to come up with a local ontological 
structure constituting the semantic web terms to model the 
data. Most of previous works in annotating semi structured 
data focus on the second step. Some skip the first step and 
bootstrap the ontological terms and structure from the local 
data itself. For example, a number of systems that map data 
in RDB to RDF format leverage a set of rules such as “table 
to class and column to predicate”. The Semantic Web may 
represent a future direction for bringing deep-Web 
information to the surface, leveraging RDF as a common and 
exible data model for exporting the content of such databases, 
leveraging RDFS and OWL as a means of describing the 
respective schemata, and thus allowing for automatic 
integration of such data by Web search engines. Efforts such 
as D2R(Q) [13] seem a natural fit for enabling RDF exports 
of such online databases. Offering search and querying over a 
raw RDF dataset collected from the Web would thus entail 
many duplicate results referring to the same entity, emulating 
the current situation on the HTML Web where information 
about different resources is fragmented across source 
documents. Given a means of identifying equivalent entities 
in RDF data { entities representing the same real-world 
individual but identified incongruously} would enable the 
merging of information contributions on an entity given by 
heterogeneous sources without the need for consistent URI 
naming of entities. 
The majority of users are accustomed to expressing their 
information needs in terms of keywords. It would be 
interesting to have a semantic search that has a traditional 
“Google-like” interface (keyword queries), but at the same 
time performs semantic processing. A semantic search that 
enables both textual information and RDF annotations 
querying is presented in [5]. Froogle [7] also presents a very 
interesting approach for product searches. It is a search 
engine specialized in querying for products, where the user 
expresses the products he wants to search 
for using keywords that are associated with the product (i.e. 
its brand, name, model, etc.). Froogle tries to guess the 
product the user wants to search for by associating the 
keywords in the query with the metadata that describe the 
products in their knowledge base. Another interesting 
semantic searcher is SCORE [15]. It uses automatic 
classification and information-extraction techniques together 
with metadata and ontology information to enable contextual 
multi-domain searches that try to understand the exact user 
information need expressed in a keyword query. 
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In general the common search algorithms are 
RDF Path Traversal - traversing the net formed by the RDF 
data format. 
Keyword to Concept Mapping 
Graph Patterns - used to formulate patterns for locating 
interesting connecting paths between resources. Also 
commonly used in data visualization. 
Logics - by using inference based on OWL 
Fuzzy concepts, fuzzy relations, and fuzzy logics 
2.2 Single pattern algorithms 
This algorithm requires a preprocessing phase, which 
prepares a table of occurrences of the first and the last 
characters of the pattern in the given input text. The 
preprocessing phase time complexity of the Native string 
search algorithm is less than the Rabin-Karp string search 
algorithm and the Quick Search algorithms. The 
preprocessing phase time complexity of the Rabin-Karp string 
search algorithm is compared with the Native string search 
algorithm and Quick Search algorithms and is presented in 
the table tab 1,  
Let m be the length of the pattern and let n be the length of 
the searchable text. Asymptotic times are expressed using O, 
Ω, and θ notation. Before introducing our method, we first 
investigate the influence on searching time cost when using 
different strategies of Exact Pattern Matching and Partial 
Pattern matching algorithm; we extract partial strings from 
three positions: the leftmost, the rightmost, and the middle of 
the pattern. Above figure shows the comparison of their 
corresponding searching speed. We can see that the speed of 
extracting partial strings from the left most characters is the 
fastest, while extracting from the rightmost is the slowest. 
Speed of extracting from the middle position lies. 
 

Algorithm 
Preprocessing 

Time 
Matching Time 

Native string search 
algorithm 

0(no preprocessing) θ((n-m+1)m) 

Rabin-Karp string 
search algorithm 

θ (m) 
average(n+m), 

worst θ((n-m+1)m) 
Finite-state 
automaton based 

h

θ(m|Σ|) θ (n) 

Knuth-Morris-Pratt 
algorithm 

θ (m) θ (n) 

Boyer-Moore string 
search algorithm 

θ(m+|Σ|) Ω(n/m), O(n) 

In this phase, we find the occurrences of the first and last 
characters of the pattern in the given input text. Here, we will 
get two cases: first and last characters of the pattern are 
similar and the other, dissimilar. 
 

III.SYSTEM MODEL 
When user searches first refinement take place and here on 
first search button user enters his key word by looking at the 
description given to it server hit the database location 
information by raising a query, the server takes it gives 
information to user. This is the proposed system architecture. 
In order to make this system to overcome information 
overload problem at first search exact Pattern Matching used 

and at the second level of refinement Partial Pattern Matching 
is used  two algorithms are proposed. They are known as 
Exact Pattern Matching algorithm and Partial Pattern 
Matching algorithm. Here, we get two cases: first and last 
characters of the pattern in the given input text may be of 
similar or dissimilar. 
Case 1: If the first and the last characters of the Patterns are 
similar 
If the difference between any two occurrences of the first 
character of the pattern in the pre-computed table is less than 
the size of the pattern by one, then, it is taken as one 
probability for occurrence of an exact pattern match. 
Case 2: If the first and the last characters of the Patterns are 
dissimilar 
If the difference between any two occurrences of the last and 
the first characters of the pattern in the pre computed table is 
less than the size of the pattern by one, then, it is taken as one 
probability for occurrence of an exact pattern match. 
An interesting functionality is that the system provides, for 
each node obtained as a result of the propagation, the shortest 
path from one of the origin nodes. This allows recovering the 
path followed in the graph to obtain the inference. The node 
which contributed most for the activation of each node in the 
result set is also provided. Both these data are very important 
since they allow the knowledge engineer to better evaluate 
the results presented, and tune the search engine when 
necessary. If the results are not satisfactory, this information 
gives clues that show where the configuration should be 
changed in order to obtain better results. The result given by 
the traditional search engine is a set of node instances ordered 
by their similarity with the query. This set of nodes is 
supplied to the spread activation algorithm as the initial set of 
nodes for the propagation. In addition, the ordering 
information given by the traditional search engine is also 
used. For each node, the traditional search engine provides a 
real number that measures the relative importance of that 
node with respect to the given query. This numeric value is 
used as the initial activation value for the node. Therefore, the 
nodes that were ranked well by the traditional search engine 
will have priority in the propagation since the exploration 
starts at the nodes with the highest activation values. 
The basic Search look like following Figure .1 

 
Figure.1: Semantic Search Interface 
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3.1Exact Pattern Matching Algorithms 
The proposed location algorithms are meant for achieving 
three purposes. The first purpose is that they can enhance the 
quality of location services. The second purpose is to 
minimize the computational resources and communication 
overhead. The third purpose of them is to ensure anonymity 
of personal location privacy.  
 

 
Figure. 2: Exact Pattern Matching algorithm 

 
 

IV. IMPLEMENTATION 
Pattern-matching algorithms scan the text with the help of a 
window, whose size is equal to the length of the pattern. 
The first step is to align the left ends of the window and the 
text and then compare the corresponding characters of the 
window and the pattern; this procedure is known as attempt. 
After a match or a mismatch of the pattern, the text window 
is shifted to the right. The question is how many characters 
are required to shift the window on the text. This shift value 
varies based on the methodology used by various algorithms. 
This procedure is repeated until the right end of the window 
is within the right end of the text. The order of comparisons is 
carried out by comparing the last character of the window and 
the pattern, and after a match, the algorithm further compares 
the first character of the window and the pattern. By doing so, 
an initial resemblance can be established between the pattern 
and the window, and the remaining characters are compared 
from right to left until a complete match or a mismatch 
occurs. After each attempt, the skip of the window is gained 
by the Quick-Search bad character (qsBc) shift value for the 
character that is placed next to the window. 
By using these algorithm first refinement can be done and no 
of citations to navigate is also reduced and it will look like 
follows from fig1 we are selecting books from 12 citations it 
is reduced to 2 and it look like following figure fig.3 
 

 
Figure. 3:After first refinement using Exact Pattern Matching 

 
Now at second level refinement we are using for example  
Fig  illustrates the searching process with a certain pattern 
set. In Figure  two pointers have moved d1 off the last 
position in this window, which means there are only d1 
characters that were successfully matched. The window is 
then shifted after the failed search by the oracle. The two 
pointers are set to the last position of the new window again. 
These two pointers are decreased until the pointed characters 
fail to match. These steps are iterated until the end of the text, 
with the total number of times in which the window is slid 
being k. Within the i-th window, the comparisons   between 
the corresponding two characters have been completed for di 
times.  Location algorithm is presented as follows:  
 

  
 
Our algorithm allows the proper partial strings extraction 
from a pattern set, with random pattern lengths meeting most 
suffix matching algorithms' requirements. Each of the 
experiments discussed here shows that choosing the partial 
strings extracted by our method can achieve better searching 
speed than those by other methods. Moreover, the advantage 
of our method is more obvious on the Snort pattern set. When 
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the scale of pattern set increases, our method can achieve 
more graceful degradation. 
 

V. RESULTS ANALYSIS 
To assess the performance of our algorithm, we considered 
all the well-known algorithms for comparison with the 
proposed algorithm. We have analyzed two types of data, 
consisting of small (ó ) 4) and big (ó ) 20) alphabet sizes.The 
first one is the pattern set available in the and the second is 
the searching speed sequences. We have executed and tested 
all the algorithms under study using a 3.06 GHz processor, 1 
GB of RD-RAM with 512 KB of cache memory. 
 

 
Figure 4. Speed comparisons of partial string extractions at different 

positions with pattern sets changing. Pattern sets are from Snort. 
(pattern number range: 1000-3500, pattern length range: 5-18). 

 
IV.CONCLUSION AND FUTURE WORK 

Information overload is a common phenomenon encountered  
by users searching huge databases  We address this problem 
by organizing the query results according to their associations 
to concepts In this paper, we propose a novel method to 
Semantic Search using both Exact Pattern Matching and  
optimal partial strings based on achieving the fastest 
searching speed. these citations are refined such that the 
information overload observed by the user is minimized.  We 
propose database indexing for large data. A database index is 
a data structure that improves the speed of data retrieval 
operations on a database table at the cost of slower writes and 
increased storage space. Indices can be created using one or 
more columns of a database table, providing the basis for 
both rapid random lookups and efficient access of ordered 
records For example, an index could be created on upper(last 
name), which would only store the upper case versions of the 
last name field in the index. Another option sometimes 
supported is the use of "filtered" indices, where index entries 
are created only for those records that satisfy some 
conditional expression. A further aspect of flexibility is to 

permit indexing on user-defined functions, as well as 
expressions formed from an assortment of built-in functions. 
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