
A Class Level Fault Prediction in ObjectOriented 
Systems: Cohesion Approach 

 
M.Sudhir Kumar1, S.V.AchutaRao2, SyedAzar Ali3, MohammedAfroze4, Amjan.Shaik5 

 
1CSE, ECET, Patelguda, Hyderabad, Andhra Pradesh, India. 

2CSE,IT,VCET,Nunna, Vijayawada, Andhra Pradesh, India 
3IT, MJCET, GandipetX-Road,  Hyderabada, Andhra Pradesh, India. 

4Computer Science Department, King Saud University, Riyadh. 
5Department of CSE,ECET,Patelguda, Hyderabad, Andhra Pradesh, India. 

 
Abstract-High cohesion is desirable property in software systems to 
achieve reusability and maintainability. Software metrics plays vital 
role in software development. Here we are measures for cohesion in 
ObjectOriented (OO) software reflect particular interpretations of 
cohesion and capture different aspects of it. In earlier approaches 
the cohesion was calculated from the structural information, for 
example method attributes and references. Now inConceptual 
Cohesion of Classes(CCC), we are calculating the unstructured 
information from the source code such as comments and identifiers. 
Unstructured information is embedded in the source code. To 
retrieve the unstructured information from the source code Latent 
Semantic Indexing is used. A  case study on open source software 
systems is presented, which compares the new measure with an 
extensive set of existing metrics and uses them to construct models 
that predict software faults. In this paper we are achieving the high 
cohesion and we are predicting the fault in Object Oriented 
Systems. 
 
Keywords: Cohesion, Reusability, Object Oriented.  
 

I. INTRODUCTION 
Software Modularization, Object-Oriented (OO) 
decomposition in particular, is an approach for improving 
the organization and comprehension of source code. In 
order to understand OO software, software engineers need 
to create a well-connected representation of the classes 
that make up the system. Each class must be understood 
individually and, then, relationships among classes as 
well. One of the goals of the OO analysis and design is to 
create a system where classes have high cohesion and 
there is low coupling among them. These class properties 
facilitate comprehension, testing, reusability, 
maintainability [1,3,5,6] etc.    
Software cohesion can be defined as a measure of the 
degree to which elements of a module belong together. 
Cohesion is also regarded from a conceptual point of 
view. In this view, a cohesive module is a crisp 
abstraction of a concept or feature from the problem 
domain, usually described in the requirements or 
specifications. Such definitions, although very intuitive, 
are quite vague and make cohesion measurement a 
difficult task, leaving too much room for 
interpretation[1,2,3].In OO software systems, cohesion is 
usually measured at the class level and many different OO 
cohesion metrics have been proposed which try capturing 
different aspects of cohesion or reflect a particular 
interpretation of cohesion.  
Proposals of measures and metrics for cohesion abound in 
the literature as software cohesion metrics proved to be 

useful in different tasks, including the assessment of 
design quality, productivity, design, reuse effort, 
prediction of software quality, fault prediction 
modularization of software and identification of reusable 
of components[5,6,24,27].  
Most approaches to cohesion measurement have 
automation as one of their goals as it is impractical to 
manually measure the cohesion of classes in large 
systems. The tradeoff is that such measures deal with 
information that can be automatically extracted from 
software and analyzed by automated tools and ignore less 
structured but rich information from the software (for 
example, textual information). Cohesion is usually 
measured on structural information extracted solely from 
the source code (for example, attribute references in 
methods and method calls) that captures the degree to 
which the elements of a class belong together from a 
structural point of view[10,11,13]. These measures give 
information about the way a class is built and how its 
instances work together to address the goals of their 
design. The principle behind this class of metrics is to 
measure the coupling between the methods of a class. 
Thus, they give no clues as to whether the class is 
cohesive from a conceptual point of view (for example, 
whether a class implements one or more domain 
concepts) nor do they give an indication about the 
readability and comprehensibility of the source code. 
Although other types of metrics were proposed by 
researchers to capture different aspects of cohesion, only 
a few metrics address the conceptual and textual aspects 
of cohesion[12,15,18].  
Propose a new measure for class cohesion, named the 
Conceptual Cohesion of Classes (CCC), which captures 
the conceptual aspects of class cohesion, as it measures 
how strongly the methods of a class relate to each other 
conceptually. The conceptual relation between methods is 
based on the principle of textual coherence. We interpret 
the implementation of methods as elements of discourse. 
There are many aspects of a discourse that contribute to 
coherence, including co reference, causal relationships, 
connectives, and signals. The source code is far from a 
natural language and many aspects of natural language 
discourse do not exist in the source code or need to be 
redefined. The rules of discourse are also different from 
the natural language[1,10,17,20].  

M.Sudhir Kumar et al IJCSET |February 2012| Vol 2, Issue 2,918-922

918



CCC is based on the analysis of textual information in the 
source code, expressed in comments and identifiers. Once 
again, this part of the source code, although closer to 
natural language, is still different from it. Thus, using 
classic natural language processing methods, such as 
propositional analysis, is impractical or unfeasible. 
Hence, we use an Information Retrieval (IR) Technique, 
namely, Latent Semantic Indexing (LSI), to extract, 
represent, and analyze the textual information from the 
source code. Our measure of cohesion can be interpreted 
as a measure of the textual coherence of a class within the 
context of the entire system [23,27,30,33]. 
Cohesion ultimately affects the comprehensibility of 
source code. For the source code to be easy to understand, 
it has to have a clear implementation logic (that is, 
design) and it has to be easy to read (that is, good 
language use). These two properties are captured by the 
structural and conceptual cohesion metrics, respectively. 
The rest of the paper organizedis  as follows. In section II,  
theBack Ground discussed, section III explores the 
Methodology, section IV Latent Semantic Indexing, 
section V shows the experimental results,section VI  with 
conclusion and that followedby references. 
 

II. BACK GROUND 
Structural metrics are calculated from the source code 
such as references and data sharing between methods of a 
class belong together for cohesion.It define and measure 
relationships among the methods of a class based on the 
number of pairs of methods that share instance or class 
variables one way or another for cohesion. Therefore the 
result is Lackingof  high cohesion[1,5,7,9,19,24,27,35]. 
 

III. METHODOLOGY 
In this paper un-structural information is retrieved from 
the source code like comments and identifiers.Information 
is retrieved from the source code using Latent Semantic 
Indexing.With the help of CCC and existing metrics we 
are achieving the high cohesion and low coupling.We can 
predict the fault prediction using high cohesion. This 
work will be applicable in well compiled java program 
and it should have valid comments to measure the 
cohesion.  
 Retrieving the structured information. 
 Check the availability of structured information for  

source code. 
 Apply the LCOM5 formula for structured 

information. 
 Analyze about the comments i.e. unstructured 

information. 
 Index Searching  
 Apply the Conceptual similarity formula. 
 Comparison 

 
A. Modules and Description: 

Module1: 
To take the structured information like identifiers, 
(Example Variables).Invocation of declared methods and 

declared constructors. Here the Java program should be 
well compiled and it should be valid comments. 
Module2: 
To search the declared variables among all the classes. 
Because the main theme of the declaring class variable is, 
it should be used in all methods. So that the declared 
variables are found among all the methods. 
Module3: 
To apply the LCOM5 (Lack of cohesion in methods) 
formula. If the result is equal to one means, the class is 
less cohesive according to the structured information.  
Module4: 
To retrieve the index terms based on that comments 
which are present in all the methods. Comments are 
useful information according to the software engineer. In 
concept oriented analysis we are taking the comments. 
Based on the comments we are going to measure the class 
is cohesive or not. 
Module5: 
To check the index terms among the comments which are 
present in all the comments. 
Module6: 
To apply the conceptual similarity formula. Based on the 
result we can say the class is cohesive or less cohesive 
according to concept oriented.  
Module7: 
To compare the two results. Based on the results we can 
say that cohesion according to structure oriented and 
unstructured oriented. 
 

B. Validations: 

Module1 
Input: Java program.  
Result:Extracting the structured information from the 
class. 
Module2 
Input: Class variables and methods alone. 
Result: Extracted terms are checked out among the all 
methods. 
Module3 
Input: Checked one.Apply the LCOM5 formula 
Result: Cohesive or not. 
Module4 
Input:Java program.  
Result:Extract the comments. 
Module5  
Input: Comments. 
Result:Extract the index terms. 
Module6  
Input: Index terms. 
Result: Checked one, Based on that Class is cohesive or 
not. 
Module7  
Input: LCOM5. 
Result: Comparison. 

M.Sudhir Kumar et al IJCSET |February 2012| Vol 2, Issue 2,918-922

919



 
Figure:1 Class Diagram 

 
IV. LATENT SEMANTIC INDEXING 

LSI is a corpus-based statistical method for inducing and 
representing aspects of the meanings of words and 
passages (of the natural language) reflective of their usage 
in large bodies of text. LSI is based on a vector space 
model (VSM) as it generates a real-valued vector 
description for documents of text. Results have shown 
that LSI captures significant portions of the meaning not 
only of individual words but also of whole passages, such 
as sentences, paragraphs, and short essays. The central 
concept of LSI is that the information about the contexts 
in which a particular word appears or does not appear 
provides a set of mutual constraints that determines the 
similarity of meaning of sets of words to each other. 
LSI was originally developed in the context of IR as a 
way of overcoming problems with polysemy and 
synonymy that occurred with VSM approaches. Some 
words appear in the same contexts and an important part 
of word usage patterns is blurred by accidental and 
inessential information. The method used by LSI to 
capture the essential semantic information is dimension 
reduction, selecting the most important dimensions from a 
co-occurrence matrix (words by context) decomposed 
using singular value decomposition (SVD) . As a result, 
LSI offers a way of assessing semantic similarity between 
any two samples of text in an automatic unsupervised 
way. 
LSI relies on an SVD of a matrix (word_context) derived 
from a corpus of natural text that pertains to knowledge in 
the particular domain of interest. According to the 
mathematical formulation of LSI, the term combinations 
that occur less frequently in the given document 
collection tend to be precluded from the LSI subspace. 
LSI does “noise reduction,” as less frequently co-
occurring terms are less mutually related and therefore 
less sensible.Similarly, the most frequent terms are also 

eliminated from the analysis. The formalism behind SVD 
is rather complex and too lengthy to be presented here.  
Once the documents are represented in the LSI 
subspace,the user can compute similarity measures 
between documents by the cosine between their 
corresponding vectors or by their length. These measures 
can be used for clustering similar documents together to 
identify “concepts” and “topics” in the corpus. This type 
of usage is typical for text analysis tasks. 
Merits 

1. We can predict the Cohesion. 
2. We can predict the particular system is cohesive or not. 

 

V. EMPIRICAL RESULTS 

 
Figure:2 Cohesion measurement for class 

 

 
Figure:3 Executing the project as source code 

 

 
Figure:4  Enter a specific class for Lcom5 

 

Design

checking()

Apply the lcom5 formula()

Design1

Browse the file()

Read the file()

Design2

Get the declared Fields()

Get the declared methods()

M.Sudhir Kumar et al IJCSET |February 2012| Vol 2, Issue 2,918-922

920



 
Figure:5 Measuring the cohesion 

 

 
Figure: 6  Final result of a class 

 

 
Figure: 7  Process of Lcom5 and CCC 

 

 
Figure:8  Comparing a class with Lcom5 

 
Figure: 9 Final result of a class for Lcom5 

 
VI. CONCLUSION 

Classes in object-oriented systems, written in different 
programming languages, contain identifiers and 
comments which reflect concepts from the domain of the 
software system. This information can be used to measure 
the cohesion of software. To extract this information for 
cohesion measurement, Latent Semantic Indexing can 
beused in a manner similar to measuring the coherence of 
natural language texts. This paper defines the conceptual 
cohesion of classes, which captures new and 
complementary dimensions of cohesion compared to a 
host of existing structural metrics. Principal component 
analysis of measurement results on open source software 
applications statistically supports this fact. In addition, the 
combination of structural and conceptual cohesion metrics 
defines better models for the prediction of faults in classes 
than combinations ofstructural metrics alone. Highly 
cohesive classes need to have a design that ensures a 
strong coupling among its methods and a coherent 
internal description. 
 

ACKNOWLEDGEMENTS 
Authors would be thankful and  appreciate the R&D Cell,  
ECET for gathering the information and to prepare this 
paper. 

REFERENCES: 
[1] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen, “Measuring Coupling 
and Cohesion of Software Modules: An Information-Theory Approach,” 
Proc. Seventh IEEE Int’l Software Metrics Symp., pp. 124-134, Apr. 
2001. 
298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 
34, NO. 2, MARCH/APRIL 2008 
[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying 
the Starting Impact Set of a Maintenance and Reengineering,” Proc. 
Fourth European Conf. Software Maintenance, pp. 227-230, 2000. 
[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, 
“Recovering Traceability Links between Code and Documentation,” 
IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct. 2002. 
[4] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic Coupling 
Measurement for Object-Oriented Software,” IEEE Trans. Software 
Eng., vol. 30, no. 8, pp. 491-506, Aug. 2004. 
[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment,” IEEE Trans. Software Eng., vol. 
28, no. 1, pp. 4-17, Jan. 2002. 
[6] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.Software 
Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996. 

M.Sudhir Kumar et al IJCSET |February 2012| Vol 2, Issue 2,918-922

921



[7] M.W. Berry, “Large Scale Singular Value Computations,” Int’l 
J.Supercomputer Applications, vol. 6, pp. 13-49, 1992. 
[8] J. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-
Oriented System,” Proc. Symp. Software Reusability, pp. 259-262, Apr. 
1995. 
[9] L. Briand, W. Melo, and J. Wust, “Assessing the Applicability of 
Fault-Proneness Models Across Object-Oriented Software Projects,” 
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720, July 2002. 
[10] L.C. Briand, J.W. Daly, V. Porter, and J. Wu¨ st, “A 
Comprehensive Empirical Validation of Design Measures for Object-
Oriented Systems,” Proc. Fifth IEEE Int’l Software Metrics Symp., pp. 
43-53, Nov. 1998. 
[11] AmjanShaik, C. R. K. Reddy, BalaManda, Prakashini. C, Deepthi. 
K” An    Empirical Validation of Object Oriented Design Metrics in 
Object Oriented Systems” International Journal of Emerging Trends in 
Engineering and Applied Sciences (IJETEAS) 1 (2): 216-224 (ISSN: 
2141-7016). 
[12] AmjanShaik, C. R. K. Reddy, BalaManda, Prakashini. C, Deepthi,” 
Metrics for Object Oriented Design Software Systems: A Survey 
”International Journal of Emerging Trends in Engineering and Applied 
Sciences (IJETEAS) 1 (2): 190-198 (ISSN: 2141-7016). 
[13] AmjanShaik, C. R. K. Reddy, BalaManda.” Empirically 
Investigating the Effect Of Design Metrics On Fault Proneness in Object 
Oriented Systems” International Journal of Computer Science & 
Engineering Technology (IJCSET) 
[14] R.S. Pressman; “Software Engineering - A practitioner’s 
approach”, sixth edition, McGraw Hill, 2005. 
[15] I. Sommerville; “Software Engineering”, 7th edition, Addison 
Wesley, 2004. 
[16] El Emam, K.; Benlarbi, S.; Goel, N. and Rai, S. N; “ The 
confounding effect of class size on the validity of object-oriented 
metrics”,  IEEE Transactions on Software Engineering, 27(7) - 630-650, 
2001. 
[17] N. Fenton et al.; “Software Metrics - A Rigorous and Practical 
Approach”, International Thomson Computer Press, 1996. 
[18] B. Henderson-Sellers; “Object-Oriented Metrics, Measures of 
Complexity”, Prentice Hall, 1996. 
[19] Puneet Jai Kaur, AmadeepVerma and SimrandeepThapar; 
“Software Quality Metrics for Object-oriented Environments”, In 
proceedings of National Conference on Challenges & Opportunities in 
Information Technology, MandiGobindgarh, 23th March,2007. 
[20] Chidamber, Shyam and Kemerer, Chris, “A Metrics Suite for 
Object Oriented Design”, IEEE Transactions on Software Engineering, 
June, 1994, pp. 476-492. 
[21] Lorenz, Mark and Jeff Kidd, Object-Oriented Software Metrics, 
Prentice-Hall, Englewood Cliffs, N.J., 1994. 
[22] Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of 
Traditional Software Metrics for Object Oriented Systems”, Proceedings 
- 25th Hawaii International Conference on System Sciences, January, 
1992, pp. 359-368. 
[23] Williams, John D., “Metrics for Object Oriented Projects”, 
Proceedings - Object ExpoEuro Conference, July, 1993, pp. 13-18. 
[24] Booch, Grady, Object Oriented Analysis and Design with 
Applications, The Benjamin/Cummings Publishing Company, Inc., 
1994.  
[25] Jacobson, Ivar, Object Oriented Software Engineering, A Use Case 
Driven Approach, Addison-Wesley Publishing Company, 1993. 
[26] Hudli, R., Hoskins, C., Hudli, A., “Software Metrics for Object-
oriented Designs”, IEEE, 1994. 
[27] Lee, Y., Liang, B., Wang, F., “Some Complexity Metrics for 
Object-Oriented Programs Based on Information Flow”, Proceedings - 
CompEuro, March, 1993, pp. 302-310.  
[28] McCabe & Associates, McCabe Object-Oriented Tool User’s 
Instructions, 1994.  
[29] Set Laboratories, UX Metrics, 1994. 
[30] Sharble, Robert, and Cohen, Samuel, “The Object-Oriented 
Brewery-A Comparison of Two OO Development Methods”, Software 
Engineering Notes,Vol 18, No 2, April 1993,pp 60 -73.  
[31] Shatnawi, R; A Quantitative Investigation of the Acceptable Risk 
Levels of Object-Oriented Metrics in Open-Source Systems, in IEEE 
Transactions on Software Engineering, Volume - 36 Issue - 2, On 
page(s) - 216 – 225, March-April 2010. 

[32]http-//www.aivosto.com/project/help/pm-limits.html; visited the 
website in 13, dec,2010. 
[33] Hans Erik Eriksson, Magnus Penker, Brain Lyons and David Fado; 
“UML 2 Tool kit”, Willey publication, 2007. 
[34] Albert Dieter Ritzhaupt , “Object-Oriented Design Metrics Using 
UML Class Diagrams “ , 2nd CCEC Symposium 2004, April 8, 
2004,UNF, Jacksonville, FL. USA. 
[35] Alessandra Cau, GiulioConcas, Michele Marchesi “Extending Open 
BRR with Automated Metrics to Measure Object Oriented Open Source 
Project Success”, May 19, 2006 
[36] F.B. Abreu and R. Carapuca, ”Candidate Metrics for Object-
Oriented Software within a Taxonomy FraFramework,” . System and 
Software,vol. 26, no. l, pp. 87-96, Jan. 1994 
[37] J.Bansiya and C.G.Davis, “A Hierarchical Model for Validation of 
Object Oriented Design Quality Assessment”, IEEE Transactions on 
Software Engineering, Vol.28, No 1, January, 2002. 
[38] J M Bieman and B.-K. Kang, ”Cohesion and Reuse in an Object-
Oriented System,” Proc ACM SIGSOFT Symp Software reusability, 
Seattle, Wash., pp. 259-262,1995. 

 
ABOUT THE AUTHORS: 

M.Sudhir Kumar is working as an Associate 
Professor, Department of CSE at Ellenki College of 
Engineering and Technology (ECET), Hyderabad, 
India. He has received B.Tech(CSE) from JNTU 
Kakinada and M.Tech(SE) from JNTUH Hyderabad. 
He  has been presented and published 2 articles in 
International Conferences. His research interests are 

Software Engineering, Software Metrics and Information Security. 
 

S.V. AchutaRao is working as a Professor and Head, 
Department of CSE and IT at  
VCET,Nunna,Vijayawada, India.He has received 
M.Tech. (Computer Science and Engineering)  from 
JNTU, Kakinada, India. Presently, he is a Research 
Scholar of  Rayalaseema University (RU), Kurnool, 
India. He has been Published 5 Research Papers in 

various International  Journals. His main research interests are Bio-
informatics, Software Metrics,Data Mining, Networking and Image 
Processing. 
 

Syed Azar Aliis working as an Assistant 
Professor, Department of IT atMuffakhamJah 
College Of Engineering and  Technology 
(MJCET) , GandipetX-Road, Hyderabad, India.  
He has received B.Tech(IT)  and M.Tech(IT) 
from JNTUH Hyderabad. He has been presented  
number of technical papers in  International and 
National Conferences. He published aResearch 

paper in International Journal. His  mainresearch interests are Software 
Engineering, Software Metrics,  Information Security and Image 
Processing. 

 
Mohammed Afroze is working as aIT 
Trainer,Computer Science Department, King Saud 
University, Riyadh. He has received B.Tech(CSE) 
and M.Tech.(CSE ) from JNTUH, Hyderabad. He 
has been  presented  Research and Technical Papers 
in  National and International Conferences. His 
main  researchinterests are  Software Engineering , 
Software Metrics,Data Mining and Image 
Processing.  

 
AmjanShaik is working as a Professor Department 
of Computer Science and Engineering at Ellenki 
College of Engineering and Technology (ECET), 
Hyderabad, India.He has received M.Tech. 
(Computer Science and Technology) from Andhra 
University.He hasbeen  published and presented 
more than 30  technical and Research papers in  
International, National Conferences and 
International Journals. His main research interests 

are Software Engineering, Software Metrics and  OOAD.   

M.Sudhir Kumar et al IJCSET |February 2012| Vol 2, Issue 2,918-922

922




