
Survey on Fault Tolerance Techniques on Grid
Geeta Arora

 Computer Application, RBIM, Mohali.
mailtogeeta@gmail.com

Dr. Shaveta Rani

Computer Sc. & Engg., G.Z.S.C.E.T, Bathinda.
garg_shavy@yahoo.com

 Dr. Paramjit Singh

Computer Sc. & Engg.,G.Z.S.C.E.T, Bathinda.
param2009@gmail.com

Abstract— In a grid environment there are thousands of
resources, services and applications that need to interact in
order to make possible the use of the grid [1] as an execution
platform. Since these elements are extremely heterogeneous,
volatile and dynamic, there are many failure possibilities,
including not only independent failures of each element, but
also those resulting from interactions between them. Because
of the inherent instability of grid environments, fault-detection
and recovery is another critical component that must be
addressed. The need for fault-tolerance is especially sensitive
for large parallel applications since the failure rate grows with
the number of processors and the duration of the
computation.In this paper we will discuss the various fault
management stratigies that will help to achieve the fault
tolerance and is good reference to researcher.
Keywords— Fault Tolerance, Grid Computing, Fault
Prevention, Fault Avoidance, Fault Detection, Fault Recovery

I. INTRODUCTION

Grid computing facilitates coordinated resource sharing and
problem solving in heterogeneous, volatile, dynamic and
multi-institutional collaborations .Grid computing typically
involves using many resources (computer, data, I/O,
instruments, etc.) to solve a single, large problem that could
not be executed on any one resource. These enable sharing,
selection and aggregation of suitable computational and
data resources for solving large-scale compute-intensive,
data-intensive, collaboration-intensive problems in science,
engineering, and commerce and address problems ranging
from fault diagnosis in jet engines and earthquake
engineering to bioinformatics, biomedical imaging, and
astrophysics.
The applications cited above need a coordinated resource
sharing, where the sharing is not primarily file exchange but
rather direct access to computers, software, data, and other
resources, as is required by a range of collaborative
problem-solving and resource-brokering strategies
emerging in industry, science and engineering. Thus, this
sharing is, necessarily, highly controlled, with resource
provides and consumers defining clearly and carefully just
what is shared, who is allowed to share, and the conditions
under which sharing occurs. A set of individuals and/or
institutions defined by such sharing rules form what is

called a virtual organization (VO). Grid can offer various
services [2] such as:

 Compute services: CPU cycles by pooling
computational power.

 Data services: Collaborative sharing of data
generated by people, processes and devices such as
sensors and scientific instruments.

 Application services: Access to remote software
services/libraries and license management.

 Interaction services: E.learning, virtual tables,
group communication and gaming.

 Knowledge services:Data minimg and knowledge
acquisition,processing and management

II. GRID ARCHITECTURE [2]
The components that are necessary to form a Grid are as
follows.
• Grid fabric. This consists of all the globally distributed
resources that are accessible from anywhere on the Internet.
These resources could be computers (such as PCs or
Symmetric Multi-Processors) running a variety of operating
systems (such as UNIX orWindows), storage devices,
databases, and special scientific instruments such as a radio
telescope or particular heat sensor.
• Core Grid middleware. This offers core services such as
remote process management, co-allocation of resources,
storage access, information registration and discovery,
security, and aspects of Quality of Service (QoS) such as
resource reservation and trading.
• User-level Grid middleware. This includes application
development environments, programming tools and
resource brokers for managing resources and scheduling
application tasks for execution on global resources.
• Grid applications and portals. Grid applications are
typically developed using Grid-enabled languages and
utilities such as HPC++ or MPI. An example application,
such as parameter simulation or a grand-challenge problem,
would require computational power, access to remote data

Geeta Arora et al IJCSET |March 2012| Vol 2, Issue 3,968-971

968

sets, and may need to interact with scientific instruments.
Grid portals offer Web-enabled application services, where
users can submit and collect results for their jobs on remote
resources through the Web.

Figure 1: Grid Architecture

III. FAULT MANAGEMENT STRATIGIES

1. FAULT PREVENTION
This is, basically, about how requests about resources are
made and how they are permitted.They consider pro-active
mechanisms [3] for fault management in which failure
consideration for the grid is made before the scheduling of a
job, and dispatched with hopes that the job does not fail.
The static replication [3] technique in fault tolerance comes
under this category in which number of replicas of the
original task is decided before execution. Fault tolerance
system runs different replicas of same task on different grid
resources simultaneously expecting that at least one of them
will complete successfully

2. FAULT AVOIDANCE
The system dynamically considers every request and
decides whether it is safe to grant the resource it at this
point, the system requires additional apriori information
regarding the overall potential use of each resource for each
process. It includes Information aware Scheduling [4],
having the information about resource availability and task
execution time, the scheduler can determine which resource
is able to complete the task without failure. Roughly
speaking, there are two types of information that can be
exploited by a scheduler, namely the information about the
characteristics of the tasks, and the information about the
characteristics of machines. The activity of a scheduler may
be abstractly described as consisting of two steps:
 1) Selection of the next task to be executed, and

 2) Selection of the machine on which it will be executed.
We will start by considering task selection first, and then
we will move to machine selection. In particular, we will
discuss two task selection policies (called LongET and
ShortET) and four machine selection policies (called
NoKnow, CpuKnow, AvailKnow and AllKnow) that, when
combined, give rise to 8 different scheduling algorithms.
Our task selection policies will assume the knowledge of
the execution time of tasks on the reference machine, while
our four machine selection policies will assume no
knowledge, the knowledge of the computing power, of the
next failure time, and of both of them for each machine,
respectively

3. FAULT DETECTION
In order to detect occurrence of fault in any grid resource
two approaches can be used: the push or the pull model. In
the push model [3], grid components periodically send
heartbeat messages to a failure detector, announcing that
they are alive. In the absence of any such message from any
grid component, the fault detector recognizes that failure
has occurred at that grid component. It then implements
appropriate measures dictated by the predefined fault
tolerance mechanism. In contrast, in the pull model [3] the
failure detector sends live-ness requests periodically to grid
components. The heart beating technique [3] can further
classified into 3 types:
• Centralized Heart beating - Sending heartbeats to a

central member creates a hot spot, an instance of high
asymptotic complexity.

• Ring Based Heart beating - along a virtual ring
suffers from unpredictable failure detection times when
there are multiple failures, an instance of the
perturbation effect.

• All-to-all Heart beating - sending heartbeats to all
members, causes the message load in the network to
grow quadratically with group size, again an instance
of high asymptotic complexity

4. FAULT RECOVERY
They consider post-active mechanisms [3] which handle the
job failures after it has occurred.

4.1 Task level fault tolerance techniques [5]:
Task level techniques refer to recovery techniques that are
applied at the task level to mask the effect of faults
irrespective of fault types Task level FTTs include the
following:

4.1.1 Retry—Retry technique for fault tolerance is the
simplest technique being used. After a failure it retries the
task on the same grid resource regardless the cause of
failure up to some threshold value with the expectation that
there will be no failure in successive attempts.

4.1.2 Alternate resource—The alternate resource
technique works just like the retry technique except it
retries on an alternate resource rather than retrying on the
same resource again and again

4.1.3 Checkpoint—The checkpoint technique periodically
saves the state of an application. On failure it moves the

Geeta et al IJCSET |March 2012| Vol 2, Issue 3,968-971

969

task to another resource and starts the execution from the
last saved checkpoint.

4.1.3.1 Uncoordinated or coordinated checkpoint [3]
Uncoordinated Checkpoint: In this approach, each of the
processes that are part of the system determines their local
checkpoints independently of the other processes though it
may lead to domino effect (processes may be forced to
rollback up to the execution beginning). During restart,
these checkpoints have to be searched in order to construct
a consistent global checkpoint.

Coordinated Checkpoint: In this approach, the
Checkpointing is orchestrated such that the set of individual
checkpoints always results in a consistent global checkpoint.
This minimizes the storage overhead, since only a single
global checkpoint needs to be maintained on stable storage.
Algorithms used in this approach are blocking and
nonblocking

4.1.3.2 Full Checkpoint or Incremental checkpoint [3]
A full checkpoint is a traditional checkpoint mechanism
which occasionally saves the total state of the application to
a local storage. However, the time consumed in taking
checkpoint and the storage required to save it is very large.
Incremental checkpoint mechanism was introduced to
reduce the checkpoint overhead by saving the pages that
have been changed instead of saving the whole process
state. In the incremental checkpoint scheme, the first
checkpoint is typically a full checkpoint. After that, only
modified pages are checkpointed at some predefined
interval. When large numbers of pages get modified another
full checkpoint is taken. In order to recover the application,
we will load a saved state from the last full checkpoint and
load the changed pages from each incremental checkpoint
following the last full checkpoint. This results in more
expensive recovery cost than the recovery cost of the full
checkpoint mechanism.

4.2 Workflow level fault tolerance techniques [5]:
Workflow level FTTs change the flow of execution on
failure based on the knowledge of task execution context.
Workflow level FTTs are classified as follows:

4.2.1. Alternate task—is similar to retry technique. The
only difference is that it exchanges a task with different
implementation of same task with different execution
characteristics on failure of the first one.

4.2.2 Redundancy—the redundancy technique requires
different implementations of same task with different
execution characteristics which run in parallel as opposed to
task level replication technique, where same tasks are
replicated on different grid resources.

4.2.3. User defined exception handling—In user defined
exception handling technique user specifies the particular
treatment to workflow of a task on failure.

4.2.4 Rescue workflow—the rescue workflow technique
allows the workflow to continue even if the task fails until
and unless it becomes impossible to move forward without
catering the failed task.

4.3 Hybrid Fault tolerance techniques [5]:

4.3.1 Alternate task with retry
 The simplest solution to this problem is to hybrid a task
level FTT and workflow level FTT. This is to avoid failures
at both task level and workflow level separately. Alternate
task with retry is a hybrid of “alternate task” FTT at
workflow level and “retry” FTT at task level. After the
failure of an alternate task, alternate task with retry FTT
simply retries the failed alternate task on the same resource
up to a certain threshold value which is in our case three. In
this way we can overcome failures of a system to a certain
extent.

4.3.2 Alternate task with checkpoint
In this FTT we choose task level checkpoint FTT with
workflow level alternate task FTT in order to minimize the
failures. When a task fails the first time, alternate task
manager finds an appropriate alternate task and forwards it
to the job dispatcher. The job dispatcher submits the
alternate task to the same resource. When the alternate task
fails the first time, the checkpoint manager applies
checkpoints to the task and forwards it to the job dispatcher.
The job dispatcher submits it to the same grid resource.
When the alternate task fails again, the checkpoint manager
retrieves the intermediate results of the last saved
checkpoint from the checkpoint information server (CIS)
and forwards the incomplete gridlet with intermediate
results to the job dispatcher.

The job dispatcher in turn submits the incomplete gridlet
and intermediate results to another suitable grid resource

5. FAULT IGNORANCE
Ignore the problem and imagine the fault never will never
occur. Also, as we may still hope that the application
executes successfully

CONCLUSION
In the light of above survey, fault tolerance plays an
important role in order to achieve availability and reliability
of a grid system. The performance [of defferent techniques
is evaluated in different conditions, on different parameters
such as throughput, turnaround time, waiting time and
transmission delay. Because of the simplicity of
implementation, retry and alternate resource techniques are
being mostly used as compared to replication and
checkpointing techniques. Replication provides better
reliability and improved response time. The waiting time of
‘alternative task’ techniques is high it is due to the
resubmission of slow task, but it works well under high
workloads and with different percentages of faults injected
in a system.The reason for good performance of ‘alternative
task’ is to takes less network delay as compare to other
FTTs. On the other hand when we have low workload and
with high percentage of faults in a system ‘checkpointing’
give better results than alternative task and other FTTs. Our
comparative study will help other researchers in order to
understand the behavior and performance of different FTTs
for Grid computing environment.

Geeta et al IJCSET |March 2012| Vol 2, Issue 3,968-971

970

REFERENCES
[1] Chopra Inderpreet, Fault Tolerance in Computational Grids, ME

Thesis ,Thapar University, May 2006
[2] Baker Mark, Buyya Rajkumar, Laforenza Domenico , Grids and

Grid technologies for wide- area distributed computing, Volume:
32, Issue: 15, John Wiley & Sons,1437-1466 ,2002

[3] Garg Ritu, Singh Kumar Awadhesh, Fault Tolereance in Grid
Computing: State of the Art and Open issues, International Journal
of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1,
Feb 2011.

[4] Anglano Cosimo, Brevik John and et al., Fault-aware scheduling
for Bag-of-Tasks applications on Desktop Grids, IEEE/ ACM
International Conference on Grid Computing, 28-29 Sept. 2006.

[5] Manuel Paul, Khan Fiaz Gul and et al., A hybrid fault tolerance
technique in grid computing system, Springer Science Business
Media, Vol 56, No. 106-128, January 2010.

[6] I. Foster, C. Kesselman and et al., The Anatomy of the Grid:
Enabling Scalable Virtual Organizations, Lecture Notes in
Computer Science, 2001

[7] Latchoumy P , Khader Abdul Sheik P, Survey of fault tolerant
techniques for grid, International Journal of Computer Science &
Engineering Survey (IJCSES) Vol.2, No.4, November 2011.

[8] Townend Paul, Xu Jie, Fault Tolerance within a Grid Environment,
Proceedings of the UK e-Science, 2003.

[9] Khan Fiaz Gul, Qureshi Kalim and et al., Performance evaluation of
fault tolerance techniques in grid computing system, Science Direct,
Vol 36 ,No 1110-1122 ,May 2010

[10] Buyya Rajkumar, Murshed Manzur , GridSim: a toolkit for the
modeling and simulation of distributed resource management and
scheduling for Grid computing, Concurrency and
computation :Practice and Experience , 1175–1220 , February 2002

[11] Dabrowski Christopher, Reliability in Grid Computing Systems,
Wiley InterScience National Institute of Standards and Technology,
100 Bureau Drive, Stop 8970, Gaithersburg, MD 20899-8970,
U.S.A.,2009.

[12] Yi Sangho, Kondo Derrick and et al., Using Replication and
Checkpointing for Reliable Task Management in Computational
Grids, High Performance Computing and Simulation , 125 –
131,June 28 2010-July 2 2010,

[13] Chopra Inderpreet, Singh Maninder, Automating the fault tolerance
process in Grid Environment, International Journal of Computer
Science and Information Security, Vol. 8, No. 7, October 2010.

[14] Manuel Paul, Qureshi Kalim and et al., Adaptive check pointing
strategy to tolerate faults in economy based grid, Springer Science
Business Media, Vol 50,No. 1–18, October 2008.

[15] Canonico Massimo, Scheduling Algorithms for Bag-of-Tasks
Applications on Fault-Prone Desktop Grids, 2005.

[16] Nguyen-Tuong Anh, Integrating Fault-Tolerance Techniques in
Grid Applications, August 2000.

Geeta et al IJCSET |March 2012| Vol 2, Issue 3,968-971

971

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5979720�

	4.1 Task level fault tolerance techniques [5]:

