
New Process Model: Yes Confident Software
Development Process Model

S.Thulasi Krishna, K. Rajesh Kumar Reddy

Dept of CSE

Kuppam Engineering College, Kuppam, Chittoor (Dt), AP.
thulasi_krishna2001@yahoo.com, rajeshk535@gmail.com

Abstract- An overview of the more common system development
process models used to guide the system analysis, design
development and maintenance of information. Generally we
have many different techniques and methods used to software
development life cycle. Project and most real word models are
customized adaptations of the generic models while each is
designed for a specific purpose or reason, most have similar
goals and share many common tasks. This paper will explore the
similarities and difference among these various models and also
discovery new process models.

Index Terms- process model, Rup, and v process model, B&F
model, F-model.

I.INTRODUCTION
“Software process model is an abstract representation of a
software process” [1].Each process model represents a
process from particular prospective, and thus provides only
partial information about that process [1].The development
life cycle of software comprises of four major stages namely
Requirement Elicitation, Designing, Coding, Testing. A
software process model is the basic frame work which gives a
workflow from one stage to the next. This workflow is a
guideline for successful planning, organization and final
execution of the software project. A project model is chooses
by keeping in view the nature of project, tools to be used and
discovered by that are required [2].A software process is a
sequence of tasks intended to produce a high quality software
product on time and with in budget [3].A software
development process is structure imposed on the
development of a software product. Similar terms include
software life cycle and software process. There are several
models for each process, each describing approaches to a
variety of tasks or activities that task place during the
process, some people consider a life cycle model a more
general terms and a software development process a more
specific term.

II.EXISTING SOFTWARE PROCESS MODELS
 Listed below are some traditional and most commonly used
software process models:
A. Concurrent Engineering Model:
The concurrent development model sometimes called
concurrent engineering model can be represented
schematically as a series of frame work activities, software
engineering action and task, and their associated status [4].

Provide a schematic representation of one software
engineering task with in the modeling activities for the
concurrent process model. The activity-modeling may be in
any one of the states noted at any given time. Similarly, other
activities or task can be represented in an analogous manner.
All activities exist concurrently but reside in different states
.its first iteration and exist in the waiting changes state. The
modeling activities which existed in the none state while
initial communication was completed, now makes a transition
into the under development state. if, however, the customer
indicates that changes in requirements must be made, the
modeling activities moves from the under development states
into the awaiting changes states. The concurrent process
model defines a series of events that will trigger transition
from state to state for each of the software engineering
activities, actions, or tasks. The concurrent model is
applicable to all types of software development and provides
an accurate picture of the current state of a project. Rather
than confining software engineering activities, actions, or
task on the network exists simultaneously with other
activities, actions, or tasks. Events generated at one point in
the process network trigger transitions among the states.
The identified drawbacks of the process are:
o The SRS must be continually updated to reflect changes.
o It requires discipline to avoid adding too many new

features too late in the project.

 B. The V-Model:
The V-Model [5] is an extension to the water model in that it
does not follow a sequence model of execution rather it bends
up word after the coding phase to form v-shape it bends
upward after the coding phase to form v-shape.
It has the following drawbacks:
o It addresses software development within a project rather

than a whole organization.
o The v-model is not complete as it argues to be as it

covers all activities at too an abstract level.

C. Build and Fix Model:
The evolution of software process models began its journey
from the most primeval process model namely the “Build and
Fix” model [8].
This model constitutes two basic steps:
 1. Writing the Code
 2. Fixing Problems in the code.

S.Thulasi Krishna et al IJCSET |March 2012| Vol 2, Issue 3,978-982

978

To give a clearer picture of its flaws, some important points
are listed below:
o Does not follow any proven method.
o Its working included, first coding then moving towards

other stages. Due to which the resulting product had a
structure which often did not meet the requirements of
the user consequently ending up in either Project
termination redevelopment which was highly expensive
[7].

o Due to a number of fixes, the resulting code had a poor
structure also these fixes were highly expensive when
addressed late in the development process. This was due
to the absence of a detailed design phase before the
coding phase [8].

o Not suitable for environment where changes are dynamic
in nature [4] .

o The model handled lightly the testing phase after coding
the basic requirements. This eventually led slipping of
numerous undiscovered errors in the code; weakening its
output [3].

 D. Rapid Application Development Model:
The RAD model [9] is an adaptation of the classical model
for achieving rapid development using component based
construction. If requirements are well understood with a well
constrained project scope, the RAD process enables delivery
of the fully function system. The model is considered to be
incremental development model and that have emphasis on
short development cycle.
Rapid Application Development has following drawbacks:
o Reduced features occur due to time boxing, where

features are delayed to later versions in order to deliver
basic functionality within abbreviated time.

o Reduced scalability occurs because a RAD developed
application starts as a prototype and evolves into a
finished application using existing component and their
integration.

o RAD, for large projects, requires a sufficient number of
human resources also requiring existence of
components for reuse.

o Also RAD is not suitable for all types of application
development [9].

o High technical risks discourage RAD use. This is
because use of new technology in software is difficult in
a changing global software market [9].

 E. Waterfall Process Model:
The Classical Life Cycle or the Waterfall Process Model [4]
was the first process model to present a sequential
framework, describing basic stages that are mandatory for a
successful software development model. It formed the basis
for most software development standards and consists of the
following phases: Requirements elicitation, Designing,
Implementation and Testing. The model restricted software
engineers to follow a Sequential order moving from one stage
to the next only after the completion of the former.
 Listed below are some flaws:

o Rigid design and inflexible procedure.
o Restricting back & forth movement from a later stage to

a former one.
o When new requirements surface accommodating

those with existing ones become difficult due to
restrictions in looping back to prior stages.

o Waterfall Model faced “inflexible point solutions”
which meant that even small amendments in the design
were difficult to incorporate later in design phase.

o As the requirements were frozen before moving to the
design phase, using the incomplete set of requirement,
a complete design was worked on. Such an approach
worked normally well for a small project requiring
average amendments. In case of a large project,
completing a phase and then moving back to
reconstruct the same phase, incurred a large overhead.

o Once a phase is done, it is not repeated again that is
movement in the waterfall goes one to the next and the
vice versa is not supported. Deadlines are difficult to
me in case of large projects [7].

F. Rational Unified Process:
The RUP [1] provides dynamic, static and practice
perspectives of a product. The RUP provides each team
member with the guidelines, templates and tool mentors
necessary for the entire team to take full advantage of the best
practices. The software lifecycle is broken into cycles, each
cycle working on a new generation of the product. This
phased model identifies four discrete phases:
o Inception phase
o Elaboration phase
o Construction phase
o Transition phase

The identified drawbacks of the process are:
o Each phase has a milestone which needs to be satisfied

for the next particular phase to start.
o If the respective milestone of the particular phase is not

satisfied the entire project might get cancelled or re-
engineered before proceeding further.

o The satisfaction criteria of a particular milestone has its
own constraints and are not listed specifically [6].

G. The Formal model:
The formal methods model encompasses a set of activities
that leads to formal mathematical specification of computer
software formal methods enable a software engineer to
specify, develop, and verify a computer-based system by
applying a rigorous. When formal methods are used during
development, they provide a mechanism for eliminating
many of the problem that are difficult to overcome using
other software engineering cardiogram
These identified drawbacks of the process are:
o The development of formal models is currently quite

time consuming and expensive
o It is difficult to use the models as a communication

mechanism for technically unsophisticated customers.

S.Thlasi Krishna et al IJCSET |March 2012| Vol 2, Issue 3,978-982

979

III. CONFIDENT SOFTWARE DEVELOPMENT
PROCESS MODEL

The Confident process model which we have proposed has
seven phases, namely; Feasibility study/Requirement,
Requirement Based Analysis, Logical Design, Confident
Code, Logical Testing, Implementation & Deployment, and
Maintenance. It is a flexible model not restricting the
developers enabling them to move both Front and back from
any given stage to any other stage during its lifecycle. Each
phase is further divided into sub phases, each specifying a
criterion which has to be met to move to the next phase. This
criterion also points out which phase to back track in case of
failure. The model starts with the Feasibility Study/
Requirement and Analysis phase in which requirements are
gathered as well as validated by the user. Next phase inline is
the Logical Design, We will design our software .Next phase
Confident Code, we will write code confident manner. Next
phase Logical Testing phase in which
we will testing software after coding. Next phase ,
Deployment ,it’s last phase ,our software and later on it is
tested and is validated by the user. But meanwhile if some of
the requirements changes or new requirements surface during
this phase, then we can loop back to requirement phase to
accommodate new requirements with the existing one.
Following this phase is the Implementation and Deployment
phase which ultimately leads to Maintenance Phase.

Figure 1:

A. Identify Requirements & Requirement Based
Analysis(IR&RBA):
First, Feasibility study, System Based Requirement and
Model Based Requirement, Identify requirements and are
divided into “Must have” and “Should have” requirements as
shown in fig. 2. The “Must have” requirements are those
which are most important to the system and must be the part
of the system. These mandatory requirements are expected to
be implemented in the first version itself. While “Should

have” requirement are those which have lesser priority owing
to trivial implementation their they are delayed till later
versions.”Should have” requirements are equally important
and must not be left out in later versions. We have divided
requirements to have more and more focus on the “Must
have” requirements, and also to make our work simple and
easier to carry out. The requirements are then initially
Verification and validated by the user and we are left with the
refined requirements only. Initial Verification and Validation
by the user will ensure whether or not the developer is going
in the right direction and that all the concerned parties are
committed with the requirements being gathered. The refined
requirements are also revalidated again by the user in the
Final Validation step to get the clear and obvious picture of
the user requirements. Then all the requirements i.e. “Must
have” and “Should have” are integrated to have the overall
scenario of requirements for the software.

Figure 2: Identify Requirement &Requirement Based

Analysis

 B. Logical Design with Validation:
Beginning of Design phase is marked by the existence of an
Initial Architectural Model. Architecture Model consists of
all basic modules that our system will have. The next step is
the Risk Analysis and Risk Resolution of the Architectural

S.Thlasi Krishna et al IJCSET |March 2012| Vol 2, Issue 3,978-982

980

Model in the Designing phase. A risk [10] is a potential for
loss or damage to development of the software from
materialized threats. Risk Analysis attempts to identify all the
risks and then quantify the severity of the risks. If it occurs, it
exploits vulnerability in the security of a computer based
system. Here, different risks involved are identified and
resolved ensuring secure development and advancement of
the design towards its deliverable version. This step leads to
achievement of a Design. Following this step is the Model
Validation step. Here the identified Architectural Model is
validated ensuring all basic modules have been covered. The
validation’s major objective is to ensure that all concerned
parties are equally satisfied by the output. Once the design is
validated and is found to be up to the mark, next step is to
give a more detailed complete Design Fig 3.
Each Validation sub phase in Design phase commands
fulfillment of a certain criteria. Criteria fulfillment allows
moving downward/ forward in the flow towards the next
phase whereas criteria non-fulfillment restricts moving
forward and loops back to the phase decided by the criteria.
The flow works its way all the way back towards the phase it
looped back from. The criteria fulfillment is tested again and
next decision is taken accordingly.

Figure 3: Logical Design & Testing

C. Code &Deployment:
The first sub phase of code & Deployment is Coding. Next
this coding is analyzed for Risks (if any) and their
Resolution. Risk Analysis and Resolution (if any) like
technology risk, platform risk, programming language risk,
and last but not least the cost risk. Then, whole system is
tested; here the System Testing is involved. System testing of
software is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified
requirements. System testing falls within the scope of black

box testing, and as such, should require no knowledge of the
inner design of the code or logic. [16] Now, the software is
validated and verified by the concerned authority. After
which the system is deployed. Deployment should be
interpreted as a general process that has to be customized
according to specific requirements or characteristics.

Figure 4: Confident Code & Deployment

D. Maintenance:
Maintenance refers to modification in the product after
delivery, to correct errors or to improve the performance.
Maintenance phase in our model may include many activities
like creation of management plan, analysis of the problem
process. It includes other activities like coding of
modification, checking whether the software conforms to
particular environment or not whatever is needed.

IV.CONCLUSION
Waterfall assumes all upcoming requirements to be frozen
and to be accommodated in later versions of the product. In
Confident Model, we haven’t frozen requirement phase, one
can move easily from design phase to requirement phase if a
new requirement(s) surfaces. We can easily incorporate small
to large changes in any phase. Unlike Evolutionary Model,
Confident Model does not include users involvement at every
step rather users are involved only when there are critical
assessments to be made. In prototype model, the user is
provided with the demo of the system. The user suggestions
and feedback are used to incorporate new requirements and
correct existing ones. This ultimately ends up in not knowing
in advance how long it will take to complete a project.

Initial Architectural Model

Requirement Based
Analysis

Logical Design

Validation

Complete Design

Risk Analysis and

Resolution

Logical Testing

Verification Validation

Deployment

Confident Code

S.Thlasi Krishna et al IJCSET |March 2012| Vol 2, Issue 3,978-982

981

REFERENCES
[1] Ian Somerville, “Software Engineering”, 8th Edition, 2006, pp. 89.
[2] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”,5th

ed. New York: McGraw-Hill, 2001, pp. 26.
[3]”Software project management a Real Word Guide to success

“person Education, pp.25
[4] Roger S.Pressman” Software Engineering, a practitioner’s Approch”6th

Ed New York: McGraw-hill 2005 pp 88.
[5] Jeff Tian, Southern Methodist University, Dallas, “Software Quality

Engineering”, IEEE, Computer Society Publication, Willy Inter
Science, 2005.

[6] P. Kruchten, “Rational Unified Process Best Practices for Software
Development Teams”, Canada: rational Software, 2001

[7] B.W. Boehm, “Anchoring the Software Process”, IEEE, IEEE Software,
vol. 13, Issue 4, July 1996, pp. 73-83

[8] E. Carmel, S. Becker, “A Process Model For Packaged Software
Development”, IEEE, IEEE Transaction on Engineering Management,
vol. 42, Feb 1995, pp. 50-58.

[9] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”, 5th
ed. NewYork: McGraw-Hill, 2001, pp. 34.

[10]www.onestoptesting.com/risk Analysis/, accessed on 25, Nov. 2009.
[11]"http://en.wikipedia.org/wiki/System_ Testing" accessed on 26,
Nov. 2009.

AUTHORS:

S.THULASI KRISHNA received the B.Tech.
Degree in Computer Science and Engineering
from Jawaharlal Nehru University
,Hyderbad,India in 2005, M.E from Sathyabama
University Chennai ,and Ph.D pursing from
Rayalaseema University ,Kurnool. He joined as
Asst.professor in VIST Engineering College in
august 2005 ,Hyderabad. He was worked as
Asso.Professor in Vidyanikethan Engineering

College Tirupathi. and currently working as Asso.Professor in Kuppam
Engineering College. He is member of International Association of
Engineering.

K. Rajesh Kumar Reddy received the B.Tech.
Degree in Computer Science and Engineering
from Jawaharlal Nehru University, Anantapur in
2009, M.Tech from Jawaharlal Nehru University,
Anantapur in 2011 and currently working as
Assistant Professor in Kuppam Engineering
College. He is member of International

Association of Engineering.

S.Thlasi Krishna et al IJCSET |March 2012| Vol 2, Issue 3,978-982

982

