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Abstract—Cloud Computing is termed with great potential in providing 
robust computational power to the society at low cost. This enables 
customers with limited computational resources to outsource the large 
computation workloads to the cloud, and to enjoy massive 
computational power, bandwidth, and storage economically. Connecting 
the cloud to an intrinsically insecure computing platform from the 
viewpoint of the cloud customers, must model mechanisms not only 
protect sensitive information by enabling computations with secured 
encrypted data, but also protect customers against malicious behaviors 
by including the validation of the computation result. Such a 
functionality of general secure computation outsourcing was shown to be 
feasible in theory recently, but to design mechanisms that are practical 
efficient remains a very challenging problem. Nonlinear programming 
problems are in more general difficult than linear programming 
problems, and often hence the way out found is only a local optimum. 
The way out methods for nonlinear programming models varies, which 
can result to different nonlinear solvers giving different local optima for 
to same problem. 
This application with multiple objective optimization techniques based 
on the methods of nonlinear goal programming in performing optimal 
synthesis of general planar mechanisms is presented. This optimization 
technique and the objectives of the design problem are first identified 
and prioritized according to their relative importance value. The 
mechanism analysis is performed to identify the design variables and the 
relationships to the dependent variables. The nonlinear goal 
programming technique is exploitd to determine the optimal values for 
the design variables that best satisfy the desired objectives of the 
problem. Uniqueness of this optimization technique lies in its ability to 
include all its objectives directly in the optimization process. So this 
method eliminates the need to identify a single objective for the purpose 
of optimization. Multiple illustrative mechanism synthesis problems 
with multiple objectives studied for optimal way outs using the 
nonlinear goal programming technique and the method produced 
accurate and acceptable way outs. This application of method to three 
typical industrial type mechanism synthesis problems is presented. 
Keywords: Linear Programming, Non Linear Programing,Affine 
mapping,Duality theorem , 
 

INTRODUCTION 
Focusing to engineering computing and optimization tasks, 
this paper examines secure outsourcing of widely applicable 
linear programming (LP) computations.To achieve practical 
efficiency, this mechanism design explicitly decomposes our 
LP computation outsourcing into public LP solvers on the 
cloud and private LP parameters owned by the customer. This  
results in flexibility allows  to explore appropriate 
security/efficiency tradeoff via higher-level abstraction of LP 
computations compared to the general circuit representation. 
Particularly,formulating private data owned by the customer 
for LP problem as a set of matrices and vectors, which able to 
develop a set of efficient privacy-preserving problem 
transformation techniques, which allows to transform original 
LP problem into some arbitrary one In the time of protecting 

sensitive input/output information. During the validation of 
the computation result, we further explore the fundamental 
duality theorem of LP computation and to derive the 
necessary with sufficient conditions which corrects the result 
must  be satisfied. This result verification mechanism termed 
extremely efficient and it incurs close-to-zero additional cost 
on both cloud server and customers. Extensive security 
analysis and the experiment result shows the immediate 
practical ability of our mechanism design. 

 
Fig. 1: Architecture of secure outsourcing non-linear 

programming  problems in Cloud Computing 
 
Considering the linear program where the cost coeffcients 
calculated as uncertain, for which we have a Bayesian 
prior.As we can collect the information to improve the 
understanding of these coeffcients, but it may be expensive, 
giving a separate optimizing problem and the collection of 
information for improving the quality of the way out relative 
to the true cost coeffcients. Hence formulating this 
information collection  of the problem for linear programs for 
the first time, and to derive  knowledge gradient policy that 
maximizes the marginal value of each measurement. We 
prove this policy is asymptotically optimal, and demonstrates 
its performance of our algorithm on a network flow problem. 
Consider the standard form of a linear program, given by  
V(c)=maxX C

T
X 

s.t.   Ax=b 
x> 0 
and suppose that this vector c of objective co-efficients is 
unknown. we have certain initial information on the problem 
that allows  to construct a Bayesian prior around c. hence, 
view c as a random variable whose distribution represents  
uncertainty in the beliefs. We have the ability for making the 
noisy measurements of individual co-efficient of c. Every 
measurement provides new information which can be 
exploited to update and improve the beliefs about objective 
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co-efficient. Measurements are assumed as time-consuming 
and expensive; choosing any co-effcient to measure at any 
time, but the total budget allocated for measurements is finite. 
Moreover, our beliefs about different co-effcients may be 
correlated, meaning that the single measurement could 
potentially provide exploitful information about more than 
one component of c. This problem is to determine that co-
effcients to measure in order to come as close as possible to 
the optimal way out of the true LP  
A basic idea for a linear program with stochastic parameters 
has been around for many years. Thus this problem was 
originally formulated by Danzig (1995) and this proposed 
approach in the early study was to solve a deterministic LP 
where c was replaced with its mean. Problem for finding IEV 
(c), expected optimal value for the linear program, was 
approached by Madansky (1960) and Itami(1974) . This 
study is considered for various theoretical properties of the 
problem, but computing on the desired expectation still posed 
a challenge. Assumptions and approximations for the multi-
stage version of this problem were considered by Birge 
(1982) . Multi-stage stochastic problems are highly studied in 
the area of stochastic programming;. Moreover, the analysis 
will give insights on how a stronger mechanism should be 
designed. Nonlinear programming (NLP) is the route of 
solving a system of equalities and inequalities, communally 
termed constraints, on a set of unknown real variables, along 
with the objective function to be maximized or minimized, 
where some of the constraints or the objective function are 
nonlinear. 
A distinctive non convex problem is that of optimising 
hauling costs by selection from a set of transportion methods, 
one or more of which put on view economies of scale, with a 
range of connectivity’s and capacity constraints. Considering 
an illustration would be petroleum product transport given a 
assortment or combination of pipeline, rail tanker, road 
tanker, river barge, or coastal tankship. Outstanding to 
economic batch size the cost functions may have 
discontinuities in toting up to smooth changes. 
Mathematical formulation of the problem 

The problem can be stated simply as: 

 to maximize some variable such as product 
throughput 
or 

 to minimize a cost function 
where 

 
 

Methods for solving the problem 
Rider the intent function f  is linear and the 
constrained space is a polytope, the problem is a linear 
programming problem, which possibly will be solved using 
renowned linear programming way outs. 
Stipulating the objective function is concave (maximization 
problem), or convex (minimization problem) and the 

constraint set is convex, and then the program is called 
convex and general methods commencing  convex 
optimization can be worn in most cases. 
Proviso the intent function is a ratio of a concave and a 
convex function (in the maximization case) and the 
constraints are convex, then the quandary can be transformed 
to a convex optimization problem by means of fractional 
programming techniques. 
Quite a lot of methods are available for solving non convex 
problems. One loom is to exploit special formulations of 
linear programming problems. An extra method involves the 
exploit of  branch and bound techniques, where the program 
is at odds into subclasses to be solved with convex 
(minimization problem) or linear approximations that form a 
lower bound on the on the whole cost within the subdivision. 
With consequent divisions, at some point an tangible way out 
will be obtained whose outlay is equal to the best lower 
bound obtained for any of the approximate way outs. This 
way out is optimal, although possibly not unique. The 
algorithm may also be stopped early, with the assurance that 
the best possible way out is within a lenience from the best 
point found; such points are called ε-optimal. Terminating to 
ε-optimal points is on average necessary to make certain 
finite termination. This is particularly exploitful for large, 
difficult problems and problems with tentative costs or values 
where the vagueness can be estimated with an appropriate 
dependability estimation. Under differentiability and 
constraint qualifications,the Karush–KuhTucker(KKT)  
conditions afford necessary conditions for a way out to be 
optimal. Under convexity, these conditions are also sufficient. 
 

PROBLEM STATEMENT 
System and menace Model and thus we consider a 
computation outsourcing architecture concerning two 
different entities, as illustrated the cloud customer, who has 
hefty amount of computationally expensive LP problems to 
be outsourced to the cloud; the cloud server (CS), which has 
significant computation resources and provides efficacy 
computing services, such as hosting the public LP solvers in a 
pay-per-exploit manner. The customer has a across-the-board 
linear programming problem Φ (to be formally defined later) 
to be solved. Moreover, due to the lack of computing assets, 
like processing power, memory, and storage etc., he may not 
carry out such pricey computation locally. Hence, the 
customer resorts to CS for solving the LP computation and 
leverages its computation 3 capacity in a pay-per-exploit 
manner. As an alternative of directly sending original 
problem Φ, the customer first exploits a secret K to map Φ 
into some encrypted description ΦK and outsources problem 
ΦK to CS. CS then exploits its public LP solver to get the 
retort of ΦK and provides a precision proof Γ, but it is made-
up to learn nothing or little of the sensitive information 
contained in the original problem description Φ. Following 
receiving the way out of encrypted problem ΦK, the customer 
should be able to first bear out the answer via the appended 
proof Γ. But it’s correct, he then exploits the secret K to plot 
the output into the desired answer for the original problem Φ. 
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NLP techniques are exploited consistently and are 
predominantly efficient in solving optimal direct problems. 
During the crate of a discrete control problem, i.e., when the 
controls are exerted at discrete points, the problem can be 
directly stated as a NLP problem. In a unbroken control 
problem, on the supplementary , i.e., when the reins are 
functions to be exerted over a granted planning horizon, an 
approximate way out can be instigate by solving a NLP 
problem. Throughout this section, we shall consider the 
following NLP problem: 
                        min x          f(x) 
  s.t.          g(x) ≥ 0 
       h(x) =0 
        x�X 
whereX is a subset of IRnx, x is a vector of nx components x1; 
: : : ; xnx, and f : X  IR, 
g : X  IRng and h : X  IRnh are defined on X. 
The function f is generally called the objective function or 
criterion function. Each of the constraints gi(x) ≤ 0, i = 1,….., 
ng, is called an inequality constraint, and each of the 
constraints hi(x) = 0, i = 1,…., nh, is called an equality 
constraint. reminder also that the set X typically includes 
lower and upper bounds on the variables; the reason for 
untying variable limits from the other inequality constraints is 
that they can play a exploitful role in some algorithms, i.e., 
they are handled in a detailed way. This  vector x � X 
satisfying all the constraints is called a feasible way out to the 
problem;  and the collection of all such points forms the 
feasible region. The NLP problem, then, is to find a feasible 
point x* such that f(x) ≥ f(x*) for each feasible point x. 
Unneeded to say, a NLP problem can be stated as a 
maximization problem, and the inequality constraints can be 
on paper in the form g(x) ≥ 0. 
 

DESIGN GOALS 
To facilitate secure and practical outsourcing of LP under the 
abovementioned model, our method design should achieve 
the following security and performance guarantees. 
1) Correctness: whichever cloud server that loyally follows 
the method must produce an yield that can be decrypted and 
verified lucratively by the customer. 
2) Soundness: Refusal cloud server can engender an incorrect 
yield that can be decrypted and verified lucratively by the 
customer with non-negligible probability. 
3) Input/output privacy: No susceptible information from the 
customer’s private data can be resultant by the cloud server 
during performing the LP computation. 
4) Efficiency: The confined computations done by customer 
should be to a large extent less than solving the original LP 
on his own. The computation saddle on the cloud server 
should be within the equivalent time intricacy of existing 
practical algorithms solving LP problems. 
 

BACKGROUND ON LINEAR AND NON LINEAR 
PROGRAMMING 

An optimization problem is frequently formulated to a 
mathematical programming problem that seeks the standards 

for a set of decision variables to minimize (or maximize) an 
objective function in place of the cost subject to a set of 
constraints. Intended for linear programming, the objective 
function is an affine function of the verdict variables, and the 
constraints are a system of linear equations and inequalities. 
while a constraint in the outline of a linear inequality can be 
articulated as a linear equation by introducing a non-negative 
slack variable, and a free decision variable can be articulated 
as the difference of two non-negative auxiliary variables, any 
linear programming problem can be articulated in the 
following standard form, 
minimize    cTx subject to Ax = b, x ≥ 0.  
Here x is an n×1 vector of decision variables, A is an m×n 
matrix, and both c and b are n×1 vectors. It can be tacit 
further that m ≤ n and that A has packed row rank; otherwise, 
extras rows can always be eliminated from A. In this we 
study a more universal form as follows, 
Minimize    cTx subject to Ax = b, Bx ≥ 0. 
In fastidious, a common way out framework based on central-
point NLP solvers and     sensitivity concepts is well thought-
out. Within the subsequent section, we commence some basic 
concepts and details and portray specific formulations of the 
MHE and NMPC nonlinear programming problems. During 
NLP solvers and near some basic NLP sensitivity results. 
Within Section it derives advanced-step approximation 
strategies for MHE and NMPC, based on NLP sensitivity to 
condense on-line computational time. We may also discuss 
their wide-ranging constancy and performance properties, 
specially when both are applied together. In Section 5, the 
potential of the combined MHE and NMPC way out 
framework is verified on a largescale case study concerning 
the instantaneous monitoring and control of a distributed low-
density polyethylene tubular reactor. 
preliminary from an primary point, a direction of pressure 
group is determined according to a preset rule, and then a 
move is finished in that direction so that the objective 
function value is condensed; next to the new point, a new 
direction is resolute and the process is repeated. The main 
distinction between these algorithms rest with the rule by 
which successive directions of movement are selected. A 
characteristic is usually made stuck between those algorithms 
which conclude the search direction without using gradient 
information (gradient-free methods), and those using grade 
(and higher-order derivatives) information (gradient-based 
methods). Here, we shall center of notice our attention on the 
latter division of methods, and more specifically on Newton-
like algorithms 
 

PROPOSED SYSTEM: 
The simulated annealing (SA) technique (Kirkpatrick et al., 
1983) was derived from statistical mechanics for result near 
globally-minimum-cost way outs to large  optimization 
problems. It simplifys the hill  climbing methods and 
eliminates their main disadvantage: dependence of the way 
out on the starting point, and statistically promises to deliver 
an optimal way out. This is achieved by introducing a 
probability _ of acceptance (i.e., replacement of the current 
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point by a new point): _ = 1, if the new point provides a 
better value of the objective function; moreover, _ > 0, if not. 
during the latter case, the odds of acceptance _ is a function 
of the values of objective function for the current point and 
the new point, and an additional control parameter, 
\temperature", T. Into general, the lower temperature T is, the 
smaller the probability for the acceptance of a new point are. 
During execution of the algorithm, the temperature of the 
system, T, is lowered in steps. 
Mechanism Design Framework 
We set forward to pertain problem transformation for 
mechanism design. The general framework is adopted from a 
basic approach, whereas our instantiation is completely 
unusual and novel. In this framework, the progression on 
cloud server can be represented by algorithm ProofGen and 
the progression on customer can be ordered into three 
algorithms (KeyGen, ProbEnc, ResultDec). These four 
algorithms are summarized lower and will be instantiated 
later. 
• KeyGen(1k) → {K}. This is a randomized key generation 
algorithm which takes a system security parameter k, and 
returns a secret key K that is exploitd later by customer to 
encrypt the target LP problem. 
• ProbEnc(K,�) → {�,K}. This algorithm encrypts the input 
tuple _ into _K with the secret key K. According to problem 
transformation, the encrypted input _K has the same form as 
_, and hence defines the problem to be solved in the cloud. 
• ProofGen(�,K) → {(y, Г)}. This algorithm augments a 
generic solver that solves the problem �K to produce both 
the output y and a proof Г. The output y later decrypts to x, 
and Г is exploitd later by the customer to verify the 
correctness of y or x. 
• ResultDec(K,�, y, Г) → {x, }. This algorithm may choose 
to verify either y or x via the proof Г. In any case, a correct 
output x is produced by decrypting y using the secret K. The 
algorithm outputs  when the validation fails, indicating the 
cloud server was not performing the computation faithfully. 
 

BASIC TECHNIQUES 
Convexity and Constraint Qualification 
In wide-ranging we can only imagine that an optimization 
algorithm computes a local minimum and not a global one, 
i.e. a point x_ with f(x_) ≤ f(x) for all x  P ∩ U(x_), 
somewhere U(x_) is a fitting neighborhood of x_. Moreover, 
each local minimum of a nonlinear programming problem is 
a global one if the problem is convex, for example, if f is 
convex, gj linear for j = 1, . . . , me and gj concave for j = me 
+1, . . . , m. These conditions force the feasible region P to be 
a convex set. 
Definition 1 A function f : Rn → R is called convex, if 
f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) 
for all x, y  Rn and λ  (0, 1), and concave, if we replace ’≤’ 
by ’≥’ in the above inequality. For a twofold differentiable 
function f convexity is comparable to the the property that 

2f(x) is positive semi definite, i.e. zT 2f(x)z ≥ 0 for all z  
Rn. Convexity of an optimization problem is imperative 
mainly from a exploratory point of view, since many 

convergence, duality or other theorems can be proved only 
for this special case. Inside practical situations, moreover, we 
include hardly a chance to analysis whether a numerical 
problem is convex or not. On the way to be able to formulate 
the ensuing optimality conditions, we need a special 
postulation to let alone irregular behavior of the feasible sets 
P at a local way out. We call it constriction 5 qualification, to 
be measured as some kind of regularity in more general form. 
During our situation it is adequate to proceed from the 
following definition: 
Definition 2 A constraint qualification in x_  P is satisfied, 
if the gradients of active constraints, 
i.e. the vectors gj(x_) for j  {1, . . . , me}  I(x_), are 
linearly independent. 
2.2 Karush-Kuhn-Tucker Conditions 
Intended for increasing and understanding an optimization 
method, the ensuing theorems are essential.They characterize 
optimality and are as a result also important for testing a 
current iterate with esteem to its convergence accuracy. 
Theorem 1 (necessary second order optimality conditions) 
Let f and gj be twice continuously differentiable for j = 1, . . . 
, m, x_ a local minimizer of (2) and the constraint 
qualification 
in x_ be satisfied. Then there exists a u_  Rm, such that 
 
a) u_ 
j≥ 0 , j = me + 1, . . . , m , 
gj(x_) =0 , j = 1, . . . , me , 
gj(x_) ≥ 0 , j = me + 1, . . . , m , 

xL(x_, u_) =0 ,u_ 
j gj(x_) =0 , j = me + 1, . . . , m 
b) sT 2 xL(x_, u_)s ≥0 (5) 
for all s  Rn with gj(x_)T s = 0, j  {1, . . . , me}  I(x_) 
(second order condition). 
Statement a) of the theorem is calledthe Karush-Kuhn-
Tucker-condition. It says that at a 
local way out the incline of the objective function can be 
articulated by a linear permutation of gradients of active 
constraints. Moreover statement b) implies that the 
Lagrangian function is positive semi-definite on the divergent 
space defined by the active constraints. meant for a 
discussion of general duality-based optimality conditions 
see.. 
Theorem 2 (sufficient second order optimality conditions) 
Let f and gj be twice continuously differentiable for j = 1, . . . 
, m and x_  Rn, u_  Rm be given, so that the following 
conditions are satisfied: 
a) u_j≥ 0 , j = me + 1, . . . , m , 
gj(x_) =0 , j = 1, . . . , me , 
gj(x_) ≥ 0 , j = me + 1, . . . , m , 

xL(x_, u_) =0 , 
u_j gj(x_) =0 , j = me + 1, . . . , m (first order condition), 
b) sT 2 xL(x_, u_)s > 0 for all s  Rn with s _= 0, gj(x_)T s 
= 0, j = 1, . . . , me, and for all s with gj(x_)T s = 0, j = me + 
1, . . . , m, and u_j > 0 (second order condition). 

Bhavsingh Maloth et al IJCSET |March 2012| Vol 2, Issue 3,993-997

996



Then x_ is an isolated local minimum of f on P, i.e. there is a 
neighborhood U(x_) of x_ with f(x_) < f(x) for all x  U(x_) 
∩ P, x _= x_. 
while reading a nonlinear programming textbook, one has to 
be attentive of the fact that the optimality conditions are often 
stated in a vaguely different way. The formulation of a NLP 
problem varies from author to author depending e.g. whether 
a minimum or a maximum is search, whether the inequality 
constraints exploit ≤ insteadof ≥, or whether upper and lo wer 
bounds are included. moreover there exist different version of 
the above statements, where the assumptions are whichever 
more general or more expert, respectively. 
 

CONCLUDING REMARKS 
In this paper, for the first time,  extend our result to non-
linear programming computation outsourcing in cloud. we 
formalize the problem of securely outsourcing and solving 
NLP computations in cloud computing, and provide such a 
practical mechanism design which fulfills 
input/output privacy, cheating resilience, and efficiency. 
Many NLP problem solving and optimization techniques 
have been proposed and explained. 
The problem solving methods  demonstrates the immediate 
practicality of the proposed mechanism. We plan to 
investigate some interesting future work as 
follows: 1) devise robust algorithms to achieve numerical 
stability; 2) explore the sparsity structure of problem for 
further efficiency improvement; 3) establish formal security 
framework;  
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