

Excogitating File Replication and Consistency
maintenance strategies intended for Providing
High Performance at low Cost in Peer-to-Peer

Networks

 Bollimuntha Kishore Babu#1, Divya Vadlamudi#2, Movva N.V Kiran Babu#3
,M.Hema Madhuri#4

 #,1#2,#4Department of CSE, K L University, Andhrapradesh.
#3Department of CSE, Mother Theresa Institute of Science &Technology, Sathupally,AP.

#1bkishore002@hotmail.com,

,#2divya.movva@kluniversity.in,
#3kiranbabuonline@yahoo.co.in,

#4metlamadhuri@gmail.com

Abstract— P2P is a trendy technology used for file
sharing. File replication and Consistency maintenance
are the methods used in P2P for elevated system
performance. File replication methods indicate replica
nodes without thinking about consistency maintenance
which may lead to high overhead for redundant file
replications and consistency maintenance. Consistency
maintenance methods update files without considering
file replication dynamism which may not give the
accuracy of replica consistency. Hence there is a need
to think about consistency maintenance while file
replication to achieve high performance and high
availability. When data files are replicated at many
nodes, consistency must be maintained among the
nodes. In this paper we point out different replication
strategies that are applied P2P systems, followed by
consistency maintenance techniques intended for high
performance and high availability of data. Finally we
explore a combined method of file replication and
consistency maintenance.

Keywords— peer to peer system, file replication,
Consistency maintenance.

I. INTRODUCTION

The term P2P refers to "peer-to-peer" networking. A peer-
to peer network allows computer hardware and software
to function without the need for special server devices.

P2P is an alternative to client-server network design. In
client-server network, each computer or process on the
network is either a client or a server. Servers are powerful
computers or processes dedicated to managing disk drives
(file servers), printers (print servers), or network traffic
(network servers). Clients are PCs or workstations on
which users run applications. Clients rely on servers for
resources, such as files, devices, and even processing
power. In peer-to-peer network, each workstation has
equivalent capabilities and responsibilities. This differs
from client/server architectures, in which some computers
are dedicated to serving the others. With increase in
popularity of Peer to Peer (P2P) networks it has also
become one of the medium for spreading of viruses,
spywares, ad ware, and malware through file sharing
applications. Some of the P2P file sharing programs
available on internet are bittorrent, limeware, kazaa,
shareaza, imesh, bearshare lite, kceasy, ares galaxy, emule,
soulseek, winmx, piolet etc Most of the people download
audio and video files by using P2P file sharing. Whenever
a file is requested frequently, the capacity of the node
degrades and gives delayed response. File replication is
very useful in this situation. In this method, the load is
distributed over replica nodes. File consistency
maintenance is to maintain consistency between file and
its replica nodes. This paper discuss about different
strategies to achieve high efficiency in file replication and
consistency maintenance at a lower cost. A sample P2P
network is shown in Figure 1.

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1043

Figure 1: A sample p2p network

In file replication and consistency maintenance methods,
nodes accept replicas and update messages. They are
unable to keep track the utilization of replicas to
determine the need of file replicas and replica updates.
Minimization of the number of replicas helps to reduce
unnecessary updates in consistency maintenance. Here the
numbers of replicas are based on queries. In the next
section we discuss different replication strategies that are
applied to P2P systems.

 Figure 2: P2P network functional diagram

II. REPLICATION STRATEGIES

One way to improve the performance of a system is to
replicate data files on several nodes, before a query is
resolved. In this section, we survey various replication
techniques that are applied to p2p systems. Initially,
specific replication strategies that indicate how replicas
are distributed across the nodes are proposed in [2].
Uniform, proportional and square-root replications are
examples of the above strategies. In uniform replication
strategy all data files are replicated at the same number of
nodes, even though some data files are more frequently
requested than others. Using this technique, the required
maximum search cost is minimized. An alternative
strategy is proportional replication. Here, the number of
replicas for a specific data file is proportional to the query
probability of the data file. So, if nodes store only the data
files that are requested for, the replication distribution is
almost proportional to the query distribution. Although
queries for popular data files are satisfied efficiently
because there are many replicas for the requested data
files across the network, queries for unpopular data files
require higher search cost. Between uniform and
proportional replication is square-root replication. In this
strategy, the replicas of a specific data file are
proportional to the square root of its query probability.
Square-root replication provides a balance for searching
popular and unpopular data files.

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1044

A. REPLICATION ON STRUCTURED SYSTEMS

Additionally, structured p2p systems use specific methods
to improve their performance and to increase their
availability. When data files are replicated, the load of the
system is balanced and usually there are copies nearby the
requestor. Also, the availability is higher since we can use
replicas in the case of failures and nodes departures. On
the other hand, the amount of storage increases and we
must maintain the consistency of the replicated data. In
this section, we introduce such methods that are applied to
Chord[3] and CAN[4].

Chord: A strategy for metadata replication that is used in
Chord is based on successor lists. With a successor list a
node maintains information about the next nearest
successors on the ring. This list guarantees the correctness
of a search.

CAN: In Content-Addressable Network (CAN) a
replication technique is based on realities, which are
independent coordinate spaces. Each node is assigned to a
zone in each reality. Thus, if CAN has r realities, a node is
assigned to r zones, one for each reality. Replicas of the
hash table are stored in each reality. In this way, when
there are multiple realities, a pointer for a specific data
file is stored at more than one different node. In order to
improve data availability, we can also use k different hash
functions to map a key onto k points in the coordinate
space, and so replicas of the (key, value) pair are placed to
k different nodes in the system. In this case, the (key,
value) pair is not available only when all k replicas are not
available at the same time. Furthermore, replication is
also used in the overloading coordinate zones technique.
According to this technique, multiple nodes may share a
zone. So, replicas of the hash table are placed to all nodes
that have been assigned to the same zone, ensuring higher
availability. In general, when a node conceives that
receives many requests for a specific data key, it may
replicate this data key at each of its neighbors. A node
that holds a replica can be used to satisfy related requests,
reducing the load of the node that holds the ’original’ data.
A particular kind of replication is caching. A node can
maintain a cache of data keys that are recently accessed.
So, it first checks its own cache in order to find the
requested data key. Only if the data key is not found, the
request is forwarded to other nodes.

B. REPLICATION ON UNSTRUCTURED
SYSTEMS

Moreover in [2],[5] authors present replication techniques
for unstructured p2p systems. The first one is called
owner replication. When a search is successful, the
desirable data file is replicated to the node that requests
for it. This technique is used in Gnutella. Alternatively, in

path replication, when a search is successful, the desirable
data file is replicated to all nodes along the query path, i.e.
the path from the node that asks for the data file to the
node that provides it. This technique is used in Freenet [6]
and in specific circumstances may decrease the system’s
performance. In a different approach, the idea of random
walks is used. So, in random replication we count the
number of nodes on a query path, say p, and we select
randomly p of the nodes that the walks visited to replicate
the data file. This technique seems to be harder to be
implemented.

III. CONSISTENCY MAINTENANCE

When data files are replicated at many nodes, consistency
must be maintained among the nodes. In general, we can
separate replication into eager and lazy methods. Eager
replication keeps all replicas synchronized at all nodes, by
updating all replicas in a single transaction. In reverse,
lazy replication propagates asynchronously replicas’
updates to other nodes after replicating transaction
commits. Most times, p2p systems use lazy replication
because of its lower cost.

Furthermore, in [7], several strategies for spreading
updates are proposed. The following strategies are typical
examples of epidemic algorithms.

Direct mail: When an update occurs, it is immediately
mailed from its originating node, i.e. the node where the
update occurs, to all other nodes. The main advantage of
this strategy is that updates are propagated very quickly.

Anti-entropy: Periodically, every node selects randomly
another node and resolves any differences between them,
by exchanging content. There are three ways to execute
anti-entropy, called push, pull and push-pull. In push
method, when an update occurs, the originating node
propagates an update message to all nodes that hold
replicas of the updated data File. In pull method, all nodes
that hold replicas, ask the ‘primary’ node for updates. The
last method, named push-pull, is a combination of the
others. The anti-entropy strategy is reliable, but quite
slow.

Rumor mongering: When a node receives a new update, it
periodically selects randomly another node and checks if
this node has seen the update, in order to send it to it. A
node stops to send the update to other nodes, when many
other nodes have seen it.

Moreover in [8], is proposed an update strategy, which is
based on a hybrid push/pull rumor spreading algorithm.
Nodes are many times offline. When these nodes are
connected again, they must be informed about the updates

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1045

that they have missed. This update scheme has two
phases: the push and the pull one. The node where the
update occurred, initiates the push phase. The node
propagates the new update to a subset of nodes that hold a
corresponding replica.They propagates, in turn, the update
to another subset of nodes that they have not been updated
yet, and so on. This process is similar to flooding method
with constrains, because it is executed for a specific
number of steps. Furthermore, it avoids many duplicate
messages, while propagating the rumor. On the other
hand, the pull phase is initiated either by a node that has
been offline and then gets connected and needs to update
its replicas or by a node that does not receive updates for
some time or by a node that receives a pull request and is
not sure that it has the freshest replica. The above hybrid
spreading algorithm provides probabilistic guarantees for
acceptable results for queries and results no strict
consistency.

The file replication methods copies files near file owners,
file requesters or along a query path from a requester to a
owner. PAST [11], CFS [12], and Backslash [13]
replicate each file on close nodes near the file’s owner. In
LAR [14] and Gnutella [15], overloaded nodes replicate a
file at requesters. In these methods, file owners rigidly
determine replica nodes and nodes accept replicas. They
are unable to keep track replica utilization to reduce
underutilized replicas and ensure high utilization of
existing replicas. In efficient and adaptive decentralized
file replication algorithm in P2P file sharing systems
called EAD [9], traffic hubs that carry more query load
are chosen as replica nodes. The nodes continuously
check their query load in order to create copy for the file
and remove low utilized replicas. Replication in a
structured P2P system is to decrease file query time, while
replication in an unstructured P2P system is to decrease
the search time. File consistency methods are based on
structure [16] and message spreading [17].In structure
based methods, stable replica nodes are used but it is not
true in practice because of file replication dynamism. In
message spreading, unnecessary and redundant messages
are generated and is not sure that all replicas receive
update messages. Therefore the methods lead to
unnecessary file replications and overhead in consistency
maintenance.

IV. COMBINED APPROACH FOR REPLICATION AND

CONSISTENCY MAINTENANCE

In this section we present an analysis of a combined
approach [10] for File replication and consistency

maintenance. This approach is a combination of both file
replication and consistency maintenance. Both are
dependent on each other. Instead of accepting replicas and
update messages, it integrates file replication and

consistency maintenance by letting each node
autonomously determine the need for file replication and
update based on file query rate and update rates. File
replication places replicas in frequently visited nodes to
guarantee high utilization of replicas, and meanwhile
reduce underutilized replicas and overhead of consistency
maintenance. It was illustrated in Figure 3.

 Figure 3: Illustration of combined approach

In the above figure, the straight line represents the link
between replica node and server and the arrow mark
represents that the replica polls the server for update, to
make sure that an update file is available to the client.
Consistency maintenance aims to guarantee file fidelity of
consistency at a low cost with file replication dynamism
consideration. Using adaptive polling, this ensures timely
update operation and avoids unnecessary updates. The
basic idea of this approach is to use file query and update
rate to direct file replication and consistency maintenance.
Combined approach of File Replication and Consistency
maintenance mechanism is developed by using EAD [9]
file replication algorithm. This algorithm achieves an
optimized trade-off between query efficiency and
overhead in file replication. The combined approach has a
time-to-refresh (TTR) value with each replica node of a
file. It denotes at what time the replica should poll the file
owner to keep its replica updated. a node should poll the
owner to keep its replica updated. The TTR value is
changed frequently based on the results of each polling. It
takes file query rate for poll time determination. TTR
query and TTR poll denotes the next time, where the file
is updated. IRM polling algorithm uses Time To Refresh
value(TTR) to represent file change frequency. When
TTR <= TTRquery, that is, when the file change rate is
higher than the file query rate, there is no need to update
the replica at the rate of file change rate. This is because
the ultimate goal of consistency maintenance is to
guarantee the received file is up to state. If a replica is

Server

Replica of
a

Replica of
b

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1046

updated soon after its original file is changed but there is
no query for this replica until after the next update, it is a
waste to update the file this time. For example, a file
changes for every 1 second but it is visited for every 2
seconds by client, then updating replica once every 2
seconds can guarantee that the response file from replica
node is the updated file. The replication dynamism is
shown in Figure 4.

Figure 4: Interrelationship between replication and
consistency maintenance

This section presented a mechanism which integrates File
Replication and Consistency Maintenance to achieve high
efficiency in file replication and consistency maintenance
at a lower cost. Replication dynamism deals with replica
node generation, deletion and failures.

 CONCLUSIONS

 In this paper, we addressed large-scale P2P collaborative
applications in which shared data are distributed across
peers in the network. Since these peers can join and leave
at any time, data replication is required to provide high
availability and we analyzed a combined approach for file
replication and consistency maintenance which is highly
efficient at low cost. Finally we conclude that the
replication solution must satisfy the requirements like,
data type independency, high level of autonomy and
eventual consistency.

ACKNOWLEDGMENT

We like to express our gratitude to all those who gave us
the possibility to carry out the paper. We would like to
thank Mr.K.Satyanarayana, chancellor of K.L.University,
Dr.K.Raja Sekhara Rao, Dean, and K.L.University for
stimulating suggestions and encouragement. We have
further more to thank Prof.S.Venkateswarlu,
Dr.K.Subrahmanyam, who encouraged us to go ahead
with this paper.

REFERENCES

[1] Haiying (Helen) Shen,”IRM: Integrated File
Replication and Consistency Maintenance in P2P
Systems”, Parallel and Distributed Systems, IEEE
Transactions on Jan 2010

[2] E. Cohen and S. Shenker. Replication Strategies in
Unstructured Peer to-Peer Networks. In Proceedings
of the ACM SIGCOMM’02 Conference, 2002.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In
Proceedings of the ACM SIGCOMM’01 Conference,
2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A Scalable Content-Addressable Network.
In Proceedings of the ACM SIGCOMM’01
Conference, 2001.

[5] Q. Lv, P.Cao, E.Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer
Networks. In Proceedings of the ACM ICS’02
Conference, 2002.

[6] Freenet. http://freenetproject.org.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic Algorithms for Replicated Database
Maintenance. PODC, 1987.

[8] A. Datta, M. Hauswirth, and K. Aberer. Updates in
Highly Unreliable, Replicated Peer-to-Peer Systems.
In Proceedings of the 23rd International Conference
on Distributed Computing Systems, 2003.

[9] H. Shen, “EAD: An Efficient and Adaptive
Decentralized File Replication Algorithm in P2P File
Sharing Systems,” Proc. Eighth Int’l Conf. Peer-to-
Peer Computing (P2P ’08), 2008.

[10] K. Shalini, Y. Surekha,” An Algorithm for
Consistency Maintenance in P2P systems “, (IJAEST)
International Journal of Advanced Engineering
Sciences and Technologies Vol No. 9, Issue No. 1,
097 – 100.

[11] A. Rowstron and P. Druschel, “Storage Management
and Caching in PAST, a Large-Scale, Persistent Peer-
to-Peer Storage Utility,” Proc. ACM Symp.
Operating Systems Principles (SOSP), 2001.

[12] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and
I. Stocia,“Wide Area Cooperative Storage with CFS,”
Proc. ACM Symp. Operating Systems Principles
(SOSP), 2001.

[13] T. Stading, P. Maniatis, and M. Baker, “Peer-to-Peer
Caching Schemes to Address Flash Crowds,” Proc.

Replication
dynamism

Reduced cost

Replica
of a file

Updating
of a file

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1047

First Int’l Workshop Peerto- Peer Systems (IPTPS),
2002.

[14] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and
P. Keleher, “Adaptive Replication in Peer-to-Peer
Systems,” Proc. 24th Int’l Conf. Distributed
Computing Systems (ICDCS), 2004.

[15] Gnutella Home Page, http://www.gnutella.com, 2008.

[16] S. Tewari and L. Kleinrock, “Analysis of Search and
Replication in Unstructured Peer-to-Peer Networks,”
Proc. ACM SIGMETRICS, 2005.

[17] G. Xie, Z. Li, and Z. Li, “Efficient and Scalable
Consistency Maintenance for Heterogeneous Peer-to-
Peer Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 19, no. 12, pp. 1695-1708, Dec2008

Bollimuntha Kishore Babu et al IJCSET |April 2012| Vol 2, Issue 4,1043-1048

1048

