
Text Extraction from Images
Paraag Agrawal#1, Rohit Varma*2

#Information Technology, University of Pune, India
1paraagagrawal@hotmail.com

*Information Technology, University of Pune, India
2catchrohitvarma@gmail.com

Abstract— Automatic image annotation, structuring of
images, content-based information indexing and retrieval are
based on the textual data present in those images. Text
extraction from images is an extremely difficult and
challenging job due to the variations in the text such as text
scripts, style, font, size, color, alignment and orientation; and
due to extrinsic factors such as low image contrast (textual)
and complex background. However, this is realizable with the
integration of the proposed algorithms for each phase of text
extraction from images using java libraries and classes.
Initially, the pre-processing phase involves gray scaling of the
image, removal of noise such as superimposed lines,
discontinuities and dots present in the image. Thereafter, the
segmentation phase involves the localization of the text in the
image and segmentation of each character from the entire
word. Lastly, using the neural network pattern matching
technique, recognition of the processed and segmented
characters is done. Experimental results for a set of static
images confirm that the proposed method is effective and
robust.

Keywords— Image Pre-processing, Binarization, Localization,
Character Segmentation, Neural Networks, Character
Recognition.

I. INTRODUCTION

Nowadays, information libraries that originally
contained pure text are becoming increasingly enriched by
multimedia components such as images, videos and audio
clips. They all need an automatic means to efficiently index
and retrieve multimedia components. If the text occurrences
in images could be detected, segmented, and recognized
automatically, they would be a valuable source of high-
level semantics. For instance, in the Informedia Project at
Carnegie Mellon University, text occurrences in images and
videos are one important source of information to provide
full-content search and discovery of their terabyte digital
library of newscasts and documentaries [1]. Therefore,
content-based image annotation, structuring and indexing of
images is of great importance and interest in today’s world.

Text appearing in images can be classified into:
Artificial text (also referred to as caption text or
superimposed text) and scene text (also referred to as
graphics text). Artificial text is artificially overlaid on the
image at a later stage (e.g. news headlines appearing on
television, etc.), whereas, scene text exists naturally in the
image (e.g. the name on the jersey of a player during a
cricket match, etc.) [2]. Scene text is more difficult to
extract due to skewed or varying alignment of the text,
illumination, complex background and distortion. This

paper focuses on artificial text and its extraction from still
images.

 Existing OCR engines can only deal with binary text
images (characters against clean background), and it cannot
handle characters embedded in shaded, textured or complex
background [3]. This is not always the case, as there exists
many disturbances (noise) in the input text images. These
disturbances have a high influence on the accuracy of the
text extraction system.

Fig. 1 Our proposed model

The process of extracting text from images consists of
various stages as seen in Fig. 1. Each stage consists of steps
that are explained with the help of select algorithms in
Section II and are finally demonstrated by presenting
experimental results for a set of static images in Section III.

II. METHODOLOGIES

 The input image to our proposed system has a
complex background with text in it. The first stage is image
pre-processing, which serves to remove the noise from the
input image and generates a clear binary image. Text
segmentation is the next stage, where we differentiate each
character from the entire word by circumscribing them into
boxes and saving them each separately. The final stage is
text recognition, where the segmented characters are
compared to the stored character matrices and as a result,
the closest match for each character is displayed.

Paraag Agrawal et al IJCSET |April 2012| Vol 2, Issue 4,1083-1087

1083

A. Image Pre-processing

The main purpose for pre-processing the image is to
produce an image containing the text to be recognized
without any other disturbing elements or noise. This step
contributes significantly to boost the performance of text
recognition. To remove the disturbances and noise (i.e.
everything else except the text) from the image, gray
scaling is done firstly, followed by line and discontinuity
removal, which is lastly followed by dot removal.

1) Gray scaling: The main purpose for gray scaling is
to produce a binary image (containing of black or white
pixels only), thus, making it easier to distinguish text from
the background. First, all the pixels in the image are
converted to shades of gray. To do this, the RGB (R: Red,
G: Green, B: Blue) color components of each pixel in the
image are extracted using bitwise shift operators. Each of
these values of the R, G and B components vary from 0-255
[4]. Then, these values are added in a proportion of Red:
30%, Green: 59% and Blue: 11% [5] to get the gray scaled
equivalent of that particular pixel. This method is applied to
each pixel in the image to convert the entire image into gray
scale.

The technique used for text localization and
segmentation (discussed further) was developed for binary
images only, and thus, cannot be applied to colored images
directly. The main problem is that the colored images have
rich color content and complex colored background, having
high resolution with a lot of noise, which makes it difficult
to localize the text and segment the characters from those
images.

Thus, the gray-scaled image is then converted to a binary
image using simple binarization techniques such as gray
scale thresholding [6]. Binarization is one among the many
conventional methods used for text extraction from images.
These methods are based on the assumption that text pixels
have a different color than the background pixels. Thus, a
threshold color value is used to separate the text from the
background. To be specific, this is done by comparing each
pixel value to a threshold value (that lies between black and
white) and setting that pixel value to black or white as its
consequence. This yields the gray-scaled binary image that
is the input for the next step of pre-processing. This step
also provides a means for the storage of pixel values of the
entire image in an array for further processing.

It shall be noted that the noise and disturbances
contained in an image might share the same color as the
text, and thus, makes it difficult to detect the exact region
containing the text in the image. Thus, line removal;
discontinuity removal and dot removal need to be
performed for successful segmentation of text.

2) Line removal: Noise, in the form of horizontal
fluctuation (a horizontal line throughout the image) or
vertical fluctuation (a vertical line throughout the image)
might have been introduced in the image. Thus, it is
necessary to remove these horizontal or vertical lines from
the image. To do so, the image is scanned progressively to
detect rows and columns having black pixels in the entire

width and height respectively. The pixel color values of the
entire row or column detected are changed from black to
white, thus, removing the fluctuation from the input image.
It is important to note that this step does not affect the
images having no horizontal or vertical lines.

3) Discontinuity removal: Line removal leads to the
generation of discontinuities (conversion of black pixel to
white) in the text at locations that were earlier intersected
by lines that were removed during the line removal step.
This makes the recognition process difficult and needs to be
rectified by filling in the discontinuities (converting of
white pixels back to black) generated in the text. To achieve
this, 8-connected pixel connectivity is used. 8-connected
pixels are neighbors to every pixel that touches one of their
edges or corners. These pixels are connected horizontally,
vertically, and diagonally. Each of the pixels in the rows
and columns of lines eliminated during the line removal
step are scanned and their neighbouring pixels are taken
into consideration. If the diagonally, vertically or
horizontally opposite pairs of the neighbouring pixels are
black, then the pixel under consideration is also set as black.
This is because the pair of black neighbouring pixel
indicates that the pixel under consideration was converted
to white at the line removal stage, due to the line passing
through that pixel. This is performed iteratively until all the
pixels, lying on the coordinates of the lines removed, are
processed successively. Thus, the broken characters in the
text due to the line removal step are successfully filled in
again.

4) Dot removal: This is the final step of pre-processing,
wherein the remaining disturbances (noise) like unwanted
black pixels (dots) are eliminated. An assumption here is
that each of the clusters of black pixels forming the noise is
significantly smaller than the clusters of any of the
characters of the text. Here, the entire image is scanned first
by column, then by row, and the first black pixel that is
found is taken into consideration. Using 8-connected pixel
connectivity, a count is maintained, viz. incremented for
every black pixel that is found connected to the pixel under
consideration. This process is iterated until all the black
pixels in that particular cluster have been added to the count.
The count should not be incremented more than once for
the same pixel, viz. possible using simple stack operations
such as push and pop. This count of number of black pixels
contained in a particular cluster is then compared to a
default threshold value. Lesser the count than the threshold
value indicates that the cluster under consideration is some
unwanted noise. In this case, all these connected black
pixels are converted to white, thus eliminating the noise
from the image. Please note that the characters in the text
are also considered as clusters of black pixels, but are
unaffected since the count of the connected black pixels in
their case is much higher than the default threshold value.

B. Text Localization and Segmentation

After we finish pre-processing the input image, all that
remains is the text against the plain background. To
separate each character from the entire word in the image,
localization of individual characters is done, thus

Paraag Agrawal et al IJCSET |April 2012| Vol 2, Issue 4,1083-1087

1084

segmenting the text and generating distinct windows for
each and every character in the image.

Text localization involves circumscribing the characters
of the text one after the other. To do so, a three-line
horizontal group scan is performed from left to right on the
pre-processed image until a black pixel is encountered [7].
All the connected black pixels in that particular cluster (first
character of the text for the first iteration) are converted to
green and the minimum and maximum X and Y co-ordinate
values are stored in an array [1]. Again, using 8-connected
pixel connectivity and simple stack operations, such as push
and pop, all the connected black pixels in that cluster are
discovered and the extreme X and Y coordinate values are
extracted. Here, the change of color is done in order to
make sure that the character localized earlier is not re-
encountered and that the next character is directly taken into
consideration in search for the next black pixel. This
process is iterated for all the characters until the scan
reaches the end of the image without encountering a single
black pixel, i.e. when all the black clusters of characters
have been converted to green and localized.

C. Character Recognition

Now that we have discrete segmented character arrays
localized from the pre-processed image, we arrive at the last
stage of text extraction from images, i.e. recognition of
characters. This involves the thinning and scaling of the
segmented characters, followed by matching of those
characters with the stored neural network character matrices
(generated using MATLAB software) and displaying the
closest match found.

1) Thinning and Scaling: The principal reason for
thinning is the skeletonization of binary images with
applications in the areas of shape representation and
matching. This involves the usage of 8-connected pixel
connectivity for the successive deletion of boundary pixels
until a single 8-connected one pixel wide component is
obtained, which approximates the medial lines of the
original image [8].

The thinned characters are scaled to an aspect ratio of
fixed dimensions of pixels preserving the shape of the
characters. The main purpose for scaling is to improve
recognition of text of smaller font sizes as well as to save
time for recognition of text of font sizes larger than that
fixed dimensions of the pixels [1].

2) Comparison with stored neural network matrices:
The processed character matrices are compared with the
stored neural network character matrices and the closest
match is displayed as the recognized text. Here, the
technique involves the transformation of the processed
image’s pixel array into a binary weighted matrix of fixed
dimensions. As a result, uniformity is established in the
dimensions of the input and stored patterns of characters [9].
Each candidate character stored in the neural network
possesses a corresponding weight matrix. The weights of
the most frequent (black) pixels are higher and usually
positive and those of the uncommon ones (white pixels) are
lower and often negative. Therefore, importance is assigned

to the pixels based on their frequency of occurrence in the
pattern. In other words, highly probable pixels are assigned
higher priority while the less frequent ones are penalized [9].
The transformed input weight matrix is matched to the
weight matrix of each of the candidate characters stored in
the neural network. To do this, the sum total of the product
of input pattern and the corresponding elements of the
stored weight matrix, is divided by the sum total of all the
positive elements of the stored weight matrix of the current
candidate character. This yields the probability of the match
of the input pattern with the current candidate character [9].
This process is iterated for all the stored candidate
characters and the one yielding the highest probability using
the neural network matrices is declared as the recognized
character.

III. EXPERIMENTAL RESULTS

The proposed methodology in this paper is tested by
building software in Java using java libraries and classes.
The system accepts an input image with complex
background and applies the set methods presented in this
paper to recognize the text from the image. Fig. 2 through
Fig. 9 demonstrate the successful step-by-step extraction of
the text “school”, from the input image (Fig. 2).

Fig. 2 Input Image

Fig. 3 Gray Scaled Image

Fig. 4 Line Removal

Fig. 5 Discontinuity Removal

Paraag Agrawal et al IJCSET |April 2012| Vol 2, Issue 4,1083-1087

1085

Fig. 6 Dot removal

Fig. 7 Segmented Characters

Fig. 8 Thinned and scaled characters

Fig. 9 Recognized word

Here’s providing another example to suffice that the

proposed methodology is robust and works well with a set
of static input images. Fig. 10 through Fig. 17 demonstrate
the successful extraction of the text “face”, from the input
image (Fig. 10).

Fig. 10: Input Image

Fig. 11 Gray Scaled Image

Fig. 12 Line removal

Fig. 13 Discontinuity removal

Fig. 14 Dot removal

Fig. 15 Segmented characters

Fig. 16 Thinned and scaled characters

Fig. 17 Recognized Word

IV. CONCLUSIONS

This paper introduces a text extraction system and
discusses a methodology with promising directions for
future research. This methodology has been successfully
tested for a particular font in ASCII text (English language).
This can be further extended to other fonts and scripts.

Few applications of this system include: (1) Automatic
number plate recognition (ANPR), (2) Content based image
retrieval: Searching for the required keywords in the images
and retrieving the images accordingly, (3) Document data
compression: From document image to ASCII text, etc.

There might be a few cases in which certain characters
may not get recognized correctly, i.e. a character may be
recognized as some other character. This might be due to
the discrepancy in the pixel intensity values of the
processed input matrix and the various stored character
matrices. It can be inferred from the experiments performed
on the software that most of the text gets recognized
successfully and that the proposed methodology is robust
and efficient.

Paraag Agrawal et al IJCSET |April 2012| Vol 2, Issue 4,1083-1087

1086

ACKNOWLEDGMENT

The authors would like to thank Prof. P. A. Bailke and
Mr. Shekhar P. Khakurdikar for their constructive
comments and insightful suggestions that improved the
quality of this manuscript. Success is the manifestation of
diligence, perseverance, inspiration, motivation and
innovation. Every work begins with a systematic approach
leading to successful completion.

REFERENCES
[1] R. Lienhart and A. Wernicke, Localizing and Segmenting Text in

Images and Videos, Transactions on Circuits and Systems for Video
Technology, Vol. 12, No. 4, April 2002.

[2] C. Wolf and J. M. Jolion, Extraction and Recognition of Artificial
Text in Multimedia Documents, Lyon research center for Images
and Intelligent Information Systems.S. Zhang, C. Zhu, J. K. O. Sin,
and P. K. T. Mok, “A novel ultrathin elevated channel low-
temperature poly-Si TFT,” IEEE Electron Device Lett., vol. 20, pp.
569–571, Nov. 1999.

[3] S. Jianyong, L. Xiling and Z. Jun, IEEE: An Edge-based Approach
for Video Text Extraction, International Conference on Computer
Technology and Development, 2009

[4] J. Gllavata, Extracting Textual Information from Images and Videos
for Automatic Content-Based Annotation and Retrieval, PhD thesis,
Fachbereich Mathematik und Informatik der Philipps-Universität
Marburg, 2007.

[5] C. Bunks, Grokking the Gimp, New Riders Publishing Thousand
Oaks, CA, USA, 2000.

[6] E. K. Wong and M. Chen, IEEE: A Robust Algorithm for Text
Extraction in Color Video, International Conference on Multimedia
& Expo. (ICME), 2000.

[7] K. Subramanian, P. Natarajan, M. Decerbo and D. Castañòn, IEEE:
Character-Stroke Detection for Text-Localization and Extraction,
Ninth International Conference on Document Analysis and
Recognition (ICDAR), 2007.

[8] R. Mukundan, Binary Vision Algorithms in Java, International
Conference on Image and Vision Computing (IVCNZ), New
Zealand, 1999.

[9] S. Araokar, Visual Character Recognition using Artificial Neural
Networks, Neural and Evolutionary Computing, Cornell University
Library, 2005.

Paraag Agrawal et al IJCSET |April 2012| Vol 2, Issue 4,1083-1087

1087

