
Keyword based Search Engine for Web
Applications Using Lucene and JavaCC

 Priyesh Wani, Nikita Shah, Kapil Thombare, Chaitalee Zade

Information Technology, Computer Science
University of Pune

priyeshwani@gmail.com

nikitishahu@gmail.com

kapil.thombare@gmail.com

chaitaleezade@gmail.com

Abstract—Past Few years IT industry has taken leap towards
developing Web based Applications. The need aroused due to
increasing globalization. Web applications has revolutionized
the way business processes. It provides scalability and
extensibility in managing different processes in respective
domains. With evolving standard of these web applications
some functionalities has become part of that standard, Search
Engine being one of them. Organization dealing with large
number of clients has to face an overhead of maintaining huge
databases. Retrieval of data in that case becomes difficult from
developer’s point of view. In this paper we have presented an
efficient way of implementing keyword based search engine
for an application involving such kind of huge database and
demonstrated how indexing using Lucene and parsing using
JavaCC combined together can make search faster there by
reducing the data retrieval time.

Keywords— Lucene, JavaCC

I. INTRODUCTION

Searching is one of the primary needs of any application
used by any organization. Clients often seek for faster
retrieval of data. Moreover certain time constraints are
provided by the organization for searching. There are
certain search engines like Google Adsense that can be used
directly in any web application. But however in some cases
the organization prefers to develop their own search engine
due to proprietary issues.

In this paper we have presented a technique of developing
keyword based searching using Lucene and JavaCC. This
was implemented as a part of project at SunGard
Technology Services. The main objective was to provide an
enhanced keyword based search engine supporting Google
like keywords to an application Fame Energy Services. It is
a web based application offering quality-checked, fully-
managed data feeds, decision support applications and an
enterprise data management system to help you to perform
trading and risk management activities, such as market to
market valuations, deal pricing, forward curve creation, and
financial reporting of P&L

Apache Lucene(TM) is a high-performance, full-featured
text search engine library written entirely in Java. It is a
technology suitable for nearly any application that requires
full-text search, especially cross-platform. Some of its
features are Scalability, Highly accurate search algorithms,
High performance indexing. It is an open-source Java full-
text search library which makes it easy to add search

functionality to an application or website. Lucene is able to
achieve fast search responses because, instead of searching
the text directly, it searches an index instead. Which is
equivalent to retrieving pages in a book related to a
keyword by searching the index at the back of a book, as
opposed to searching the words in each page of the book.

JavacCC: Java Compiler Compiler (JavaCC) is the most
popular parser generator for use with Java applications. A
parser generator is a tool that reads a grammar specification
and converts it to a Java program that can recognize
matches to the grammar. In addition to the parser generator
itself, JavaCC provides other standard capabilities related to
parser generation such as tree building (via a tool called
JJTree included with JavaCC), actions, debugging, etc.
JavaCC works with any Java VM version 1.2 or greater. It
has been certified to be 100% Pure Java. JavaCC has been
tested on countless different platforms without any special
porting requirements. JavaCC is based on LL parsing, but it
allows you to use grammars that are not LL. As long as you
can use JavaCC's look-ahead specification to guide the
parsing where the LLrules are not sufficient, JavaCC can
handle any grammar that is not left-recursive. JavaCC thus
by providing java API provides java developers an
advantage to work around with parsing

The implemented system will accept the keywords to be
searched from the user in the form of an expression.The
user will be able to enter expressions like “Keyword1” or
“Keyword2”, “Keyword1” and “Keyword2”, “Keyword1”
not “Keyword2” as well as expressions consisting
parenthesis.It will then perform parenthesis validation and
build a search query, based on the tokens generated and the
business logic, enabling the accurate retrieval of data and
formulate the result set as per the entered expression.

Thus, by using these two technologies viz. Lucene and
Javacc, the time efficiency is increased approximately by
50%.

II. HISTORY

JavaCC:

In 1996, Sun Microsystems released a parser generator
called Jack. The developers responsible for Jack created
their own company called Metamata and changed the Jack
name to JavaCC. Metamata eventually became part of
WebGain. After WebGain shut down its operations,
JavaCC was moved to its current home.

Priyesh Wani et al IJCSET |April 2012| Vol 2, Issue 4,1143-1146

1143

Lucene:

Lucene was originally written by Doug Cutting. It was
initially available for download from its home at the
SourceForge web site. It joined the Apache Software
Foundation's Jakarta family of open source Java products in
September 2001 and became its own top-level Apache
project in February 2005. Until recently, it included a
number of sub-projects, such as Lucene Java, Droids,
Lucene.Net, Lucy, Mahout, Solr, Nutch, Open Relevance
Project, PyLucene, and Tika. Solr has been merged into the
Lucene project itself and Mahout, Nutch and Tika have
been moved to be independent top-level projects.

Main versions introduced (selected versions):

 1.01b (July 2001): last SourceForge release

 1.2 (June 2002): first Apache Jakarta release

 1.4 (July 2004): enhanced query parser, token
positions, span queries, sorting

 1.9 (February 2006): binary stored fields, date tools,
range filters, regexp query

 2.0 (May 2006): clean up of code, removed
deprecated methods

 2.4 (October 2008): various performance
improvements, delete/update

 2.9 (September 2009): near-realtime search, numeric
ranges, cleanup

 2.9.4 is recommended release for production

 3.0 (November 2009): cleanup and migration to Java
1.5 (generics, var args)

 3.1 is latest build released on March 31, 2011

Lucene implementations:

 Java (original), C++ (CLucene), .NET (Lucene.NET), C
(Lucene4c), Objective-C (LuceneKit), Python (Lupy), PHP
5 (Zend), Perl (Plucene), Delphi (MUTIS), Jruby (Ferret),
Common Lisp (Montezuma)

III. WORKING

Overall algorithm :
1. Accept parenthesized expression from user.
2. Parse the expression and convert it into an expression

tree.
3. Traverse the expression tree in postorder format in

order to build lucene queries.
4. Fire the formed lucene query and retrieve the results.
Step 1 and 2 :

We use Javacc here as our parser generator tool and
generate a parser which parses the parenthesized
expressions . We also make use of the additional
functionality available in Javacc called Jjtree to bulid our
expression tree. The code for tree building has to be written
manually as an automated procedure is not available . The
parser generated will parse the input string character by
character , we have not changed the value of default
LOOKAHEAD (which is 1).

Sample input :

((a+b)-c) , ((a+b)-(c+d+e))

Datastructures used :

A stack called nodes : to push operand

A stack called operator : to push operators

An array oparr[] : to store operators which are popped

An array nodesarr[] : to store operands which are popped

Tokens used in parsing :

IDENTIFIER : any combination of letters (a-z|A-Z) and
numbers (0-9) without space

OPERATOR: + , - , |

 + (meaning and), - (meaning not), | (meaning or)

 It could easily be extended to parse the strings “and” ,
“or” , “not”

1. On encountering an opening brace “(” , push it in the
operator stack .

2. Go to step 1 untill the parsed character remains to be
“(”

3. According to the sample input shown , the program
expects an IDENTIFIER at this point .So the parser
goes ahead only if the next parsed character is an
identifier. (a,b,1,2,1a,a1,abc123 etc).

4. When this identifier is parsed, it is pushed into the
nodes stack.

5. Now the parser , matches the string of input characters
which are to be parsed to regular expression :
(operator . Expression) * (closepar)* , where
Expression() is defined by : (openpar)*
IDENTIFIER (OPERATOR . Expression)*
(closepar)* . Here, “openpar” matches the open
parenthesis and “closepar” matches the close
parenthesis . IDENTIFIER and OPERATOR are as
defined above .

6. So following the above regex , whenever an
OPERATOR is encountered it is pushed into the
operator stack and whenever an IDENTIFIER is
encountered it is stored in the nodes stack .On
encountering the close parenthesis ,
6.1. Do

 Pop from operator stack and store in array
oparr[]

 Pop from nodes stack and store in the array
nodesarr[]

While top of operator stack ! = ” (“

Priyesh Wani et al IJCSET |April 2012| Vol 2, Issue 4,1143-1146

1144

6.2 Since the identifiers will always be one more than
the number of operator (for eg : a+b , no of
 operator =1 , number of operand =2) , an
additional pop will be required . Pop from the nodes
 stack and store it in the array nodesarr[] . Pop off
the opening bracket.
6.3 Now , we will scan the arrays from right to left:
 Do

 The rightmost element in the nodes array is
stored as our leftchild , and deleted.

 The element rightmost element now is stored
as our rightchild, and deleted.

 We attach the above right and left child to the
rightmost operator in the operator array.

 Store this operator node (which has a right and
a left child) in the nodesarr in the rightmost.

 Delete the operator from oparr[].
 While oparr[] is not empty

 6.4 The node in the nodesarr[0] is then pushed into the
nodes stack and is deleted from array.

7. Stop

Justification for use of arrays along with stack : The
existing algorithms for converting expression into
expression trees , use 2 stacks. Consider an expression like
(a+(c-z+f) , i.e when more than one operator is inside the
bracket. We follow left to right reading of the string. So
when we evaluate stack on the parsing of “)” , first we
want to evaluate a “+” , and then evaluate “-”. To store “-
”and respective operands , till we evaluate “+ ”, we need to
make use of array.

Show working :

For the input: ((a+b)-c)

When the first closing brace in encountered , the contents in
stack are.

Following the algorithm,

Nodesarr[] :

Oparr[] :

Step 3 and 4:

Build Lucene Query: Expression tree formed out of user-
entered expression is taken as input to form the Lucene
queries. The tree is traversed in postorder format and query
is build for keywords as per criterion.

Sample Input: Considering the same example, the tree
generated

Data structures used :

An BooleanQuery leftqueru/rightquery : to keep a create a
left and right subtree query saperately .

An array keywordcondition to keep a track of the parent
operator of the child nodes.

Justification for use of BooleanQuery and array: The
existing algorithms for converting expression into
expression trees , use a BooleanQuery and a array stacks.
Consider an expression like ((a+b)-c) , the tree is as
follows:

Here, Boolean query leftquery and rightquery maintain the
left and right subtree. . i.e. for operator + the leftquery is a
and rightquery is b. However for the operator – the
leftquery is ab+ and the rightquery is c. Keywordcondition
is used to keep a track of the operators during the
reccursive call. If keywordcondition is 1 the operator is +
(and), 2 the operator is – (or) else if 3 then the operator is –
(not).

Working :

For the input: ((a+b)-c)

As shown in the figure above, first we traverse -, here
keywordcondition[0]=2, then the index of the array is
incremented. Next when we come across + the valu e of
keyworcondition[1]=1. So thateach time the right subtree is
popped the index of keywordcondition is decremented and
we get the track of the operator of the current subtree.

The postorder traversal of the tree is : ab+c- . i.e. first the
roots of the tree are visited and then the operation to be
performed between them is decided i.e. +,-,|.

The query is generated for each leafnode initially and then
depending upon the keyword criterion the queries are
nested and once it reaches the root node, the final query is
passed for further processing.

Tokens used for deciding the keyword Criterion:

OPERATOR: + , - , |

+ (meaning and), - (meaning not), | (meaning or)

It could easily be extended to parse the strings “and” ,
“or” , “not”

Steps involved in generating the query for given expression:

1. Accept the expression tree from the parser.
2. Start postorder traversal
3. For node- has child and node is not visited before,

initialize the keywordcondition for corresponding

Priyesh Wani et al IJCSET |April 2012| Vol 2, Issue 4,1143-1146

1145

node (+, - or |). Keywordcondition[]=1(for +),
2(for |), 3(for -). Go to 2

4. If node is equal to leaf node, form the query for
leaf node keyword (Lucene Condition:
OCCUR.SHOULD)

5. If node is not a leaf node and not a root node, get
the keyword criterion and form the query applying
the criterion on the queries of its child nodes. Go
to 2.

6. Node is a root node. Form the final query and
return to the main calling function.

7. Pass the query formed out of the expression tree
for retrieval of the data from server.

8. Stop.

 OBSERVATION

Time complexity :

1. Building the query step 3(Postorder traverdsal): O(n)

Complexity function T(n)

T(n) = T(k) + T(n – k – 1) + c

Where k is the number of nodes on one side of root and n-
k-1 on the other side.

Let’s do analysis of boundary conditions

Case 1: Skewed tree (One of the subtrees is empty and
other subtree is non-empty)

k is 0 in this case.
T(n) = T(0) + T(n-1) + c
T(n) = 2T(0) + T(n-2) + 2c
T(n) = 3T(0) + T(n-3) + 3c
T(n) = 4T(0) + T(n-4) + 4c

………………………………………….
………………………………………….
T(n) = (n-1)T(0) + T(1) + (n-1)c
T(n) = nT(0) + (n)c

Value of T(0) will be some constant say d. (traversing a
empty tree will take some constants time)

T(n) = n(c+d)
T(n) = (-)(n) (Theta of n)

Case 2: Both left and right subtrees have equal number of
nodes.

T(n) = 2T(|_n/2_|) + c

This recursive function is in the standard form (T(n) =
aT(n/b) + (-)(n)) for master method .

When we solve it, O(n) .

 CONCLUSIONS

Thus using Lucene and JavaCC we have successfully
generated parser which parses the paranthesized input string
into an expression tree notation. The postorder traversal of
expression tree helped us to build the lucene queries
accurately and efficiently (Since postorder time complexity
is O(n) as proved above) there by enabling efficient and
optimized searching capability for the application.

ACKNOWLEDGMENT

Success is the manifestation of diligence, perseverance,
inspiration, motivation and innovation. Every nice work
begins with a systematic approach reaching successsful
completion. I am deeply grateful to Prof. M.P. Gandhi and
Prathyush Nair(Sungard Technology Services) for guiding
us and immensely honoured by her connection.

REFERENCES

[1] lucenetutorial.com

[2] JavaCC Documentation.

[3] Introduction to JavaCC.
http://www.engr.mun.ca/~theo/JavaCC-
Tutorial/javacc-tutorial.pdf

[4] Information Retrieval Seminar December 05,
2005IBM Research LabHaifa, Israel on Lucene
algorithm

[5] http://generatingparserswithjavacc.com/

Priyesh Wani et al IJCSET |April 2012| Vol 2, Issue 4,1143-1146

1146

