
Security Concerns in Software in View Of SDLC

A.Nanda Gopal Reddy, Suribabu Boyidi, Srivatsava, A.Kamala Priya

Abstract---Software has become an integral part of everyday life.
Every day, millions of people perform transaction through
internet, ATM, mobile phone, they send email & e-greetings,
and use word processing and spreadsheet for various purpose.
People use software bearing in mind that it is reliable and can be
trust upon and the operation they perform is secured. Now, if
this software has exploitable security hole then how can they be
safe for use. Security brings value to software in terms of
people’s trust. The value provided by secure software is of vital
importance because many critical functions are entirely
dependent on the software. That is why security is a serious
topic which should be given proper attention during the entire
SDLC, ‘right from the beginning’. For the proper
implementation of security in the software, twenty one security
rules are proposed in this paper along with validation results. It
is found that by applying these rules as per given
implementation mechanism, most of the vulnerabilities are
eliminated in the software and a more secure software can be
built.
Keywords-Security rules, Security rules in SDLC, Software
Security

I. INTRODUCTION
The issue related to computer security surfaced for the first
time in 1970s with report of earliest known intrusion in 1977,
first spam email in 1978, earliest large-scale identity theft in
June 1984 and attack of first known computer virus reported
in 1995, U.S. Department of Defense computers were
attacked roughly 250,000 times. In 1996, hackers alter
Websites of the U.S. Department of Justice in August, CIA in
October, and U.S. Air Force in December. In 2001, Microsoft
becomes victim of Denial of Service attacks. In May 2006, a
Turkish hacker successfully hacked 21,549 websites. In
March 2008, around 20 Chinese hackers claim of gaining
access to the world's most sensitive sites, including Pentagon.
In April 2009, Conficker, a worm infiltrated billions of PCs
worldwide including many government-level top-security
computer networks [1] [2].While trying to identify and
analyze the reason behind the cause of security breach, we
generally put blame entirely on virus attack, denial of service,
spam mail etc. If we introspect in true sense, we see that our
thinking becomes so partial that while analyzing the facts we
intend to forgo a very important and real fact which is one of
the most important factors in software security breach, and,
that is, bad software which is actually behind every security
problem and malicious attack [3]. Besides identifying and
targeting those individual security threats and providing
solution for those attacks, if we also put focus on the security
aspect of software, we surely can build a more robust and
reliable system in totality. Security loop holes in software can
also endanger intellectual property and business operations
and services. It is estimated that 70 percent of reported
security incidents result from exploits against defects in the
design or code of software [4] [5]. It is a pre assumption that

security features implemented in software delays the project
as it adds time and increase the cost. Due to this, many
designers tends to ignore or given little importance to the
security aspect of the project. However, implementing
security in software by complying with regulatory standards
gives long term benefits in terms of litigation avoidance,
protection against loss of sensitive information, and
protection against loss of reputation. It also provides
assurance that the data in a system has a reasonably
expectation of protection and privacy [6]. It also ensures
reliability, integrity, and safety for the system using secured
software. Implementing security in software from the very
stages of its development makes the system as vulnerable and
faults free as possible. It further enforces limits on the
damage so occurring consequently due to various failures
caused by attack triggered fault. It also provides mechanism
for quick recovery by the system from the damages caused by
failure. It ensures that the system continues to operate under
most adverse condition created due to the various attacks on
the system. In doing so, the system provide a mechanism of
resistance against the attacker who tries to exploit the
weakness in the software. It also provides a tolerance level of
such failures resulting from such exploits [7].In a 2005
report, approximately 163000 consumer records were stolen
leading to the case of identity thefts with a US $10 million
settlement fine. In 2006, hackers accessed the account and
personal information of nearly 19,000 AT&T credit card
holders [8]. Estimated revenue losses due to piracy in Asia-
Pacific region during 2006 were reported to be US$11.6
billion [9]. In 2007, information of around 100 million credit
and debit card accounts were stolen in U.S., resulting in
recovery cost estimated to be about US $16 million. In U.K.,
loss of personal information of around 25 million people with
an estimated recovery cost of about US $500 million was
reported. In 2008, 4.2 million credit & debit card numbers
were stolen from a supermarket chain during the card
authorization process [8].Although researchers have done
remarkable work in the field of integrating security
throughout the SDLC, ‘right from the beginning’, still a
major portion of work needs to be carried out in order to
made software more secure and reliable. In extension to the
work carried out earlier, in this paper we intend to propose
twenty one security rules which if practically applied from
the beginning of SDLC i.e., from requirement analysis phase
will definitely contribute in secure and reliable development
of software. Rest of the paper is organized as follows: in
section II we discuss about ‘Software Security’, and in
section III, ‘Security Rules’ are given, section IV, throws
light on ‘Implementation Mechanism’ and Section V focuses
on ‘Validation and Experimental Results’ with ‘Conclusion
and Future Work’ given in section VI.

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1359

II. SOFTWARE SECURITY
The objective of software security is to imagine about the
attacker and to foresee attacker’s motive and perception.
Generally, software development is thought of as building
software that works under normal conditions. But when the
security aspect is clubbed with building software, the
designer and developer focal point becomes attacker's
perspective and ‘how they can become a threat to the
software’. After proper analysis, various mechanisms of
dealing with those threats can be provided. The security can
be correctly build inside software by integrated it throughout
the entire software development life cycle [7].The activity of
software security can be thought of as building software
which performs under intentional and unintentional malicious
attack [7]. The software security should exhibit ability to
defend itself and the system from the attacker’s exploitation
and misuse of software security loop holes [10]. Moreover,
software security should have the ability to identify the
deficiencies of the software development process and to
identify critical threats that can make software vulnerable.
Software with build-in security should reflect features like
predictable execution, trustworthiness and conformance.
Along with these properties, the secure software should be
attack resistant, attack tolerant and attack resilient
[7].Information is a very important ingredient in software and
its security can be achieved by three globally accepted
properties CIA (Confidentiality, Integrity, and Availability).
• C: Confidentiality is prevention of unauthorized
 Disclosure of information.
• I: Integrity is prevention of unauthorized
 Modification of information.
• A: Availability is prevention of unauthorized
 With holding of information.
The main objective of confidentiality is to ensure that only
authorized user can access regardless of where the
information is kept and how it is accessed. Confidentiality
can be maintained by mechanism like access control,
password, biometrics, encryption, privacy and ethics [11].The
main objective of integrity is to safeguard the accuracy and
completeness of information and processing methods from
being changed intentionally, unintentionally, or accidentally.
Integrity needs to be maintained for ensuring
Privacy, security and reliability of data and information.
Integrity can be maintained by mechanisms like configuration
management and auditing [11]. The main objective of
availability is to ensure access of information and related
assets for authorized users whenever needed. Availability can
be maintained by mechanisms like data backup plan, disaster
recovery plan, business continuity or
resumption plan [11].

III. SECURITY RULES
The various issues encompassing software security is a point
of discussion and debate among the researchers and security
practitioners. One obvious way to spread software security
knowledge is to train software development staff on critical
software security issues. Beyond awareness, more advanced

software security training should offer coverage of security
engineering, design principles and guidelines, implementing
risks, design flaws, analysis techniques, and security testing.
Researchers have done tremendous job in this direction but
there are so many research issues that need to be addresses.
On the basis of various best practices available in the
literature, twenty one security rules are proposed which are
discussed in this section and visually shown in Figure 1.

All stakeholders in software development must obey these
rules in order not to introduce vulnerabilities into the system
and ensure the production of secured software system. By
analyzing the implementation results, it is observed that if the
software engineers have these rules at the back of their minds
throughout the stages of the software production, it will
ensure efficient production of secure software product to a
greater extent. These rules are given as follows:
1. Rule of Awareness: Awareness of the software security is
a major point of discussion & concern among the various
researchers and security practitioners [12]. The rule suggests
a constant acquisition of new information and updation of
existing knowledge relating to security aspect
for the software development team which includes software
architecture, software developers and software testers
[13].This can be implemented by developing an active
security awareness program for training software
development team on critical software security issues [12].
2. Rule of Prevention: As said that prevention is better than
cure, in the same way, the software designer should design
the software and associated security in such a way that the
software when attacked internally or externally by some
threat should provide some kind of safeguard and protect it
from being infected. The rule suggests that the security in
software should be synchronized in such a way that it should
be able to prevent any kind of threat from internal as well as
external source rather than let it happen and later on cure it.

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1360

The latter option of cure is also one of the remedy but it is
quite possible that by the time remedy comes into effect some
more resources and application will become infectious by the
infected source.
3. Rule of Accountability: Accountability is a key security
goal which is very vital with regards to internal systems of
security and reveals what a subject actually did. The rule of
accountability suggests that a log needs to be maintained for
all the tasks activities acts performed during an opera-
tion action with the purpose of prevention of the security
policy violations and enforcement of certain liabilities for
those acts [14]. Accountability involves tracking of activities
of users as well as processes and maintains their details in a
log book. The main purpose of accountability is to determine
the attacker or source of attack incase transaction is
committed successfully [15].
4. Rule of Confidentiality: Security in terms of software is
defined as the prevention of or protection against access to
information by unauthorized persons [16]. The rule suggests
that confidentiality should be maintained by ensuring that
information is not accessed by unauthorized persons [16]. In
other words, we can say that, the confidentiality in software
can be maintained by keeping the contents of a transient
communication or data on temporary or persistent storage
secret [15]. It provides assurance that the information is
shared only among authorized users or organizations [17].The
data should be handled in an adequate manner to safeguard
the confidentiality of the information concerned [18].
5. Rule of Integrity. Software Security in respect of integrity
security is the prevention of, or protection against intentional
but unauthorized destruction or alteration of that information
[16]. The rule suggests that integrity should be maintained by
ensuring that information is not altered by unauthorized
persons in a way that is not detectable by authorized users
[16]. It provides assurance that the information is authentic
and completes [17]. The integrity of data means that it can be
trusted and relied upon and not that the data is 'correct' [17].
6. Rule of Availability: Availability is typically thought of as
a performance goal, but it needs to be thought of as a security
goal as the loss of availability is referred to as “denial-of-
service” [15]. The rule states that a balanced approach needs
to be maintained between security and availability providing
a system that is highly secure and available at all the times
[15]. It provides assurance that the systems responsible for
delivering, storing and processing information are accessible
when needed, by those who need them [16]. A system can
ensure availability through
redundancy providing alternative paths and methods in which
the system is operational and functional at a given moment
[16].
7. Rule of Non-repudiation: In general, the concept of
ensuring that parties involved in a transaction cannot
repudiate (reject) or refute the validity of the transaction. The
rule states that the objective of non-repudiation is to ensure
undeniability of a transaction by any of the parties involved
where a trusted third party can play an important role [15].
Non-repudiation protocols can be used as a tool of security to

prove that the transaction actually took place and that the two
parties actually interacted with each other where both the
parties can not deny this fact in presence of a valid set of
evidences [15].
8. Rule of Access Control: Access control provides a form
of authority to control access to areas and resources in a
given domain thereby contributing to security issue in a
software development process. The rule suggests that access
to resources and services should be permission based and the
user if given permission should be permitted / allowed to
access those resources and services and these eligible users
should not be denied access to services that they legitimately
expect to receive [16]. To have a secure software,
implementation of access control in totality is mandatory.
9. Rule of Identification & Authentication:
Authentication is the act of establishing that the claims made
by a user are true which includes conforming the identity and
origin of the user for security purpose [19]. The rule suggests
that the process of identification and authentication must be
implemented to determine who can log on to a system and
their legitimate association which various users with respect
to their granted access rights [19]. A wide variety of
techniques are present to provide authentication which may
include use of passwords, biometric techniques, smart cards,
certificates, etc [20].
10. Rule of Accuracy: Assurance of accuracy in security is
necessary for the software system to be secured and reliable
[21]. The rule suggests that the software development team
should perform the various actions, activities, methods,
process & tasks correctly and accurately every time [13].
Here, timely accuracy is also very important from strategic
point of view [22]. Highest standards of technical accuracy
are also a prerequisite in designing and developing secure and
reliable software.
11. Rule of Consistency: Consistency is an essential feature
of software security which the protocol designer should keep
in mind during protocol designing phase of the software. The
rule suggests that the various requirements, protocols or
standards or policies designed for securing the software
system should be consistent in any case. Consistence among
various security policies is a demand for secure software.
Consistency should be maintained at all cost among the
software system, their security requirements and violation
related modules.
12. Rule of Authorization: Authorization is the process of
verifying that an authenticated subject has the authority to
perform a specified operation for security reasons [19]. The
rule suggests that the process of authorization must be
implemented to determine what a subject can do on the
system. By implementing the process of authorization, it can
be determined whether an identity is permitted to perform
specified action or not [20]. The process of authorization can
only be performed after the process of authentication has
successfully accomplished [19].
13. Rule of Privacy: Privacy can be seen as an art of being
concealed / secluded / isolated from the presence or view of
others. Privacy as a social and legal issue has for a long time

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1361

been a matter of concern and individual’s privacy in this
electronic age is increasingly endangered [23]. The rule states
that privacy can ensures that individuals maintain the right to
control what information is collected about them, how it is
used, who has used it, who maintains it, and what purpose it
is used for [16]. Privacy protection as a tool of security can
be implemented by designing and enforcing sound privacy
and data protection laws and technologies
[23].
14. Rule of Assessment / Evaluation: Assessment is a
characteristic which can be applied on process or processes to
get a quality software product. The rule suggests that each
and every process irrespective of size should be evaluated
and assessed after it has been created by the software
developer [13]. The consistency of an assessment done for
process or processes ensures the reliability of a software
system [24]. Assessment is also important for the software to
be valid as it measures the expected / desired output with the
observed output [24]. If the assessment of a process or
processes is done properly it means it is consistent and valid
which represents quality a subset of security. Assessment or
evaluation if done considering the current security
environment can help the software developer to analyze and
measure the level of security implementation in their software
product versus industry standards and best practices [25].
15. Rule of Excellence: Quality in a software means that
solution provided by that software should exactly and in
totality match the needs and demands of the environment and
its users. The rule suggests that security is a subset of quality
and the control and variability of the security features will
depend on the quality [13]. Hence in order to achieve security
in totality, the quality of the software should be of highest
standards.
16. Rule of Flexibility: Flexibility in relation to secure
software development can be defined as the systems design
synchronization with security in such a way that it can adapt
to the external changes when it occurs. The rule suggests that
the various requirements regarding security should not be
rigid and must be flexible as well as realizable [13].Here the
details of the security specifications must be realized by the
software designer and developer.
17. Rule of Fortification (Protection): Integrity is an
important ingredient of software and it should be maintained
throughout the software engineering process while
implementing security for strengthening the software. The
rule suggests that the various process used in security
engineering process should be secured in individuality and
totality [13]. Only the concerned individual should have
access to the technicalities of software security and for the
rest it should be kept a secret.
18. Rule of Unambiguity: Unambiguity in software security
means that the implementation issues of security in software
should be free from anonymity and easy to understand under
any circumstances by its designer and developer. The rule
suggests that for easy implementation of software security,
the details pertaining to it should be clear and concise [13].

All issues related to software security must be clearly
understood by the software designer and developer.
19. Rule of Error Classification: Security vulnerabilities
very often occur due to bad error handling and due to lack of
proper understanding of various errors [15]. Software
developers and software security practitioners should be
concerned about the various errors which create problems
leading to software vulnerability. The rule suggests that
errors should be categorized & classified according to a
schema containing a set of security rules for better
understanding of the problem which might have an impact on
the security of the software [26, 27]. It further suggests that
any error when recognized should be removed as soon as
possible and should not, in any case, resurface again [13].
20. Rule of Auditability: Auditing in security is a feature
which produces a sequential record of all the activities
performed in / by a system which further aids in the
reconstruction and examination of the sequence of events
and/or changes in an event. The rule suggests that auditability
must be implemented to judge the accountability feature of
software security and aids in redesign a full proof security
policy and procedures for implementing a secure thoroughly
understand the flow of information and develop a plan for
properly securing the system. It establishes the role of
security auditor as that of a validator and advisor [29].
21. Rule of Interoperability: In today’s age, most of the
software that comes in the market is platform independent
and provides interoperability i.e., one software can interact
with much software for exchange of data and information and
for other operations. In doing so it is highly likely that
software which is not secure can infect other software despite
of the fact that the latter software is secured software. This
rule suggests that if more than one software are interacting or
communicating with each other than all the software involved
in the interaction or communication must be secured.

IV. IMPLEMENTATION MECHANISM
For implementing security right from the requirements phase,
all the personnel from requirement engineers to maintenance
engineers and other stakeholders should make themselves
aware about the latest software security issues, especially the
critical ones. For SDLC team, this awareness should be more
technical, and, for other stakeholders, the awareness should
be more general, but necessary. The requirements engineer,
system software designer, programmer, test engineer,
implementation engineer and the maintenance engineer
should carry on their respective roles keeping in mind all the
twenty one security rules quoted above. Further, the
implementation engineer and the maintenance engineer
should make themselves more focused on auditability and
interoperability rules. If the security rules are followed
properly; it will help the requirement engineers to implement
the most appropriate security mechanisms like threat
modeling for meeting the true underlying security
requirements. The designers will be able to design more
secure design architecture and the programmer will be able to
develop techniques for producing more secure coding. These

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1362

security rules will broaden the role of test engineers and they
will be able to choose the appropriate tool and techniques for
testing the software from security point of view with focus on
destructive testing. Following these security rules, the
implementation engineer will be able to configure and run the
software more securely. The maintenance engineers will be
able to make secure maintenance plan and will help him /her
to adapt the software to a more secured modified
environment. The implementation mechanism of our software
security rules throughout the SDLC, ‘right from the
beginning’ is shown in Figure 2.

V. VALIDATION AND EXPERIMENTAL RESULTS
These security rules were applied to a real life project from
industry (on the request of the company, identity is
concealed), and the final result of security assessment is
calculated as per prescribed implementation mechanism.
Then the level of security assurance is compared with the
other project’s security assurance in which these rules were
not applied. The study shows that the level of risk is
minimized upto 40.5%. Due to the page limit constraint, we
are not providing the details of validation results in this
paper; we will discuss in our next paper.

VI. CONCLUSION AND FUTURE WORK
Secure software does not happen by accident. It is
accomplished only when every designer, developer, tester
and manager working on a project takes security seriously
and that too during each and every phase of software
development lifecycle. Security is not something that is
addressed at the end of the product lifecycle nor is it a
specific milestone that occurs during project execution.
Security must be everywhere. It should begin at the
requirement level and should be on the mind of every
personnel during the entire SDLC. The paper tried to present
some concrete work on software security and hence, twenty

one security rules are proposed. Validation results show the
applicability of these rules during the development lifecycle.
Future work may include the sub division of each of the
twenty one rules into their sub rules. Then set theory may be
applied on those sub rules to quantify the values as well as
steps. This may increase the accuracy level of these rules.
These rules are validated on a project given in the validation
section. Further work may be done by applying these rules on
a large sample for finding the accuracy of the same. This
work will help security experts to introduce security ‘right
from the beginning’ and for building more secure software.

REFERENCES
[1] Joseph Migga Kizza: A Guide to Computer Network Security, Springer,

2008, pp112-115.
[2]http://en.wikipedia.org/wiki/Timeline_of_comp

uter_security_hacker_history
[3] Jari Råman: Regulating Secure Software Development. Analyzing the

potential regulatory solutions for the lack of security in software,
Lapland University Press, 2006, pp 2.

[4] Hao Wang, Andy Wang: Security Metrics for Software System,ACM
Southeast Regional Conference, Proceedings of the 47th Annual
Southeast Regional Conference, 2009, ACM-SE 47, pp1-2.

[5] J. A. Wang, M. Xia, and F. Zhang, “Metrics for Information Security
Vulnerabilities, Journal of Applied Global Research, Volume 1, No. 1,
2008, pp 48-58.

[6] http://www.executivebrief.com/project management/software security-
standards-project-security /P1/

[7] Julia H. Allen, Sean Barnum, Robert J. Ellison, Gary McGraw, Nancy
R. Mead: Software Security Engineering: A Guide for Project
Managers, Addison Wesley Professional, 2008, pp 6-8.

[8] http://www.isc2.org/uploadedFiles/(ISC)2_
Public Content/ Certification programs/CSSLP/CSSLP_WhitePaper.pdf
[9] http://cwe.mitre.org/documents/sources/Seven
PerniciousKingdoms.pdf
[10] Hoglund, G. and McGraw, G., Exploiting Software: How to Break

Code. Boston: Addison-Wesley, 2006 pp 1-4.
[11] http://searchwarp.com/swa268042.htm
[12] Gary McGraw, Software Security: Building Security In, Addison

Wesley Software Security Series, 2006, pp 36.
[13] A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi: Towards Building

Secure Software Systems, Volume 3, 2006, pp 636 –645.
[14] Vladimir Golubev: Using of Computer Systems Accountability

Technologies in The Fight against Cybercrimes, Computer Crime
Research Center, downloadable from http://www.crimeresearch.
org/library/Using.html

[15] Neil Daswani, Christoph Kern, Anita Kesavan: Foundations of security
What Every Programmer Needs to Know, APRESS, 2007, pp 44.

[16] http://www.albion.com/security/intro-4.html
[17]http://security.practitioner.com/introduction/infosec_2.htm
[18]http://www.yourwindow.to/information

security/gl_confidentialityintegrityandavailabili.htm
[19] http://en.wikipedia.org/wiki/Access_control
[20]Clifford Lynch: A White Paper on Authentication and Access

Management Issues in Cross-organizational Use of Networked
information Resources, Coalition for Networked Information,1998,
 pp 3.

[21] Marshall D. Abrams, Marvin V. Zelkowitz: Striving for correctness,
Computers & Security Volume 14, Issue 8, 1995,pp 719-738.

[22] Lawrence Chung, Brian A. Nixon, Eric Yu, John Mylopoulos: Non-
functional requirements in software engineering, Kluwer Academic
Publisher, 1999, pp 324.

[23] Simone Fischer-Hübner: IT-security and privacy: Design and Use of
Privacy-Enhancing Security Mechanisms, Springers, 2001, pp 5.

[24] http://en.wikipedia.org/wiki/Assessment
[25]http://www.sun.com/service/security/securityassessment.xml
[26]http://www.fortify.com/vulncat/en/vulncat/index.html
[27]http://www.fortify.com/securityresources/taxonomy.jsp

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1363

[28] Elizabeth Wasserman: The Role of Auditing in IT and Security,
downloadable from http:// www.ciostrategycenter.com/Board/smarts/
role of audit/index.html

[29] Michael Rasmussen, Adam Brown: The Role Of Audit In IT And
Security: Separating Roles Establishing Collaboration, Forrester
Research, 2004, pp 1-2

ABOUT AUTHORS

A.Nanda Gopal Reddy currently working as Asst.Prof in Mahaveer Institute
of science and technology, Bandlaguda, Hyderabad in dept of IT. He did
M.S in Image Processing from MAHE, manipal and B.E from Madras
University, he Life time member of ISTE.

Mr.SURIBABU BOYIDI working as Asst.Prof in Sri Prakash College of
engineering, Tuni. He completed M.Tech Degree from J.N.T.University
KAKINADA; He has Good teaching experience and good knowledge in
Computer Science and Information technology subjects.

Miss A.KamalaPriya working as an Asst.Prof in annamacharya institute of
technology and sciences piglipur, bata singaram, hayath
nagar, hyderabad.She has 5 years of good teaching experience.She completed
her M.Tech from Ancharya Nagarjuna University.

MR. Srivatsava working as Assistant professor CSE Dept in Sasi Institute of
Technology and Engineering, Tadepalligudem. He completed his Master
Degree in SE from Gayatri Vidya Parishad College of Engineering,
Madhurawada, and inVizag.

A.Nanda Gopal Reddy et al IJCSET |August 2012 | Vol 2, Issue 8, 1359-1364 ISSN:2231-0711

Available online at www.ijcset.net 1364

