
Critical Survey on Multideployment and
Multisnapshotting on Clouds

S. Komal Kaur#1, K J Sarma#2, P Raja Prakasha Rao#3

#Computer Science Department, JNT University
TRR Engineering College, Hyderabad

1komalkaur13@gmail.com
2jskalavendi@gmail.com

Abstract— With Infrastructure-as-a-Service (IaaS) cloud
economics getting increasingly complex and dynamic,
resource costs can vary greatly over short periods of time.
Therefore, a critical issue is the ability to deploy and snapshot,
for that it require to boot and terminate VMs very quickly,
which enables cloud users to exploit elasticity to find the
optimal trade-off between the computational needs (number
of resources, usage time)and budget constraints. This paper
proposes a concept which reduces the time required to
simultaneously boot a large number of VM instances on
clouds from the same initial VM image (multi-deployment).
Our proposal was not only to deploy large number of client
system but also to snapshot the large number of Virtual
images which is done concurrently. Large scale experiments
under concurrency on hundreds of nodes show that
introducing such a technique which improves infrastructure
service by using or by sharing the resources.

Keywords— virtual machine, virtual image, Multideployment,
Multisnapshotting.

I. INTRODUCTION
Cloud computing is the use of computing resources
(hardware and software) that are delivered as a service over
a network (typically the Internet). The name comes from
the use of a cloud-shaped symbol as an abstraction for the
complex infrastructure it contains in system diagrams.
Cloud computing entrusts remote services with a user's
data, software and computation.
1.1 There are many types of public cloud computing:[1]

 Infrastructure as a service (IaaS),
 Platform as a service (PaaS),
 Software as a service (SaaS)
 Storage as a service (STaaS)
 Security as a service (SECaaS)
 Data as a service (DaaS)
 Business process as a service (BPaaS)
 Test environment as a service (TEaaS)
 Desktop as a service (DaaS)
 API as a service (APIaaS)

End-user access cloud based applications through a web
browser or a light-weight desktop or mobile app while the
business and user's data are stored on servers at a remote
location. Proponents claim that cloud computing allows
enterprises to get their applications up and running faster,
with improved manageability and less maintenance, and
enables IT to more rapidly adjust resources to meet
fluctuating and unpredictable business
demand.[2][3].Cloud computing relies on sharing of
resources to achieve coherence and economies of

scale similar to a utility (like the electricity grid) over a
network

Fig1. Types of Cloud Computing

 II. INFRASTRUCTURE AS A SERVICE
In this most basic cloud service model, cloud providers
offer computers, as physical or more often as virtual
machines, and other resources. The virtual machines are
run as guests by a hypervisor, such as Xen or KVM.
Management of pools of hypervisors by the cloud
operational support system leads to the ability to scale to
support a large number of virtual machines. Other
resources in IaaS clouds include images in a virtual
machine image library, raw (block) and file-based storage,
firewalls, load balancers, IP addresses, virtual (VLANs),
and software bundles.[4] IaaS cloud providers supply these
resources on demand from their large pools installed in data
centers. For wide area connectivity, the Internet can be
used or—in carrier clouds -- dedicated virtual private
networks can be configured.
 To deploy their applications, cloud users then install

operating system images on the machines as well as
their application software. In this model, it is the cloud
user who is responsible for patching and maintaining
the operating systems and application software. Cloud
providers typically bill IaaS services on a utility
computing basis, that is, cost will reflect the amount of
resources allocated and consumed.

 IaaS refers not to a machine that does all the work, but
simply to a facility given to businesses that offers users
the leverage of extra storage space in servers and data
centers.

 Examples of IaaS include: Amazon CloudFormation
(and underlying services such as Amazon
EC2), Rackspace Cloud, Google Compute Engine, and
RightScale.

S. Komal Kaur et al IJCSET |August 2012 | Vol 2, Issue 8, 1365-1368 ISSN:2231-0711

Available online at www.ijcset.net 1365

Fig .2 Cloud Infrastructure

ADVANTAGES:
More and more companies are moving from traditional
servers to virtual servers in the cloud, and many new
service-based deployments are starting in the cloud.
However, despite the overwhelming popularity of the cloud
here, deployments in the cloud look a lot like deployments
on traditional servers. Companies are not changing their
systems architecture to take advantage of some of the
unique aspects of being in the cloud.
The key difference between remotely-hosted, virtualized,
on-demand-by-API servers (the definition of the “cloud”
for this post) and any other hardware-based deployment
(e.g., dedicated, co-located, or not-on-demand-by-API
virtualized servers) is that servers are software on the
cloud.
APPLICATION STATE
The state of the VM deployment is defined at each moment
in time by two main components: the state of each of the
VM instances and the state of the communication channels
between them. For VM instances that need large amounts
of memory, the necessary storage space can explode to
huge sizes. For example, saving 2 GB of RAM for 1,000
VMs consumes 2 TB of space, which is unacceptable for a
single one point-in-time deployment checkpoint.Therefore,
can further be simplified such that the VM state is
represented only by the virtual disk attached to it ,which is
used to store only minimal information about the state, such
as configuration files that describe the environment and
temporary files that were generated by the application. This
information is then later used to reboot and reinitialize the
software stack running inside the VM instance.
Such an approach has two important practical benefits:
(1) huge reductions in the size of the state, since the

contents of RAM, CPU registers, and the like does not
need to be saved; and

(2) portability, since the VM can be restored on another
host without having to worry about restoring the state
of hardware devices that are not supported or are
incompatible between different hypervisors.

Since Model is the most widely used checkpointing
mechanism in practice, we consider the multisnapshotting
pattern.
APPLICATION ACCESS PATTERN
A VM typically does not access the whole initial image.
For example, it may never access some applications and
utilities that are installed by default with the operating

system. In order to model this aspect, it is useful to analyze
the life-cycle of a VM instance, which consists of three
phases:
 Boot phase: involves reading configuration files and

launching processes, which translates to random
small reads and writes from/to the VM disk image
acting as the initial state.

 Application phase: translates to either negligible
virtual disk access (e.g., CPU-intensive applications
that do not require persistent storage or data
intensive applications that rely on dedicated
storage services such as Amazon S3 [6]).

 Shutdown phase: generates negligible disk access to
the image and is completely missing if the VM
instance was terminated prematurely.

III. DESIGN MODEL
We rely on four key principles: aggregate the storage space,
optimize VM disk access, reduce contention, and optimize
multisnapshotting.
AGGREGATE THE STORAGE SPACE
We propose to aggregate the storage space from the
compute nodes in a shared common pool that is managed in
a distributed fashion, on top of which we build our virtual
file system. This approach has two key advantages. First, it
has a potential for high scalability, as a growing number of
compute nodes automatically leads to a larger VM image
repository, which is not the case if the repository is hosted
by dedicated machines. Second, it frees a large amount of
storage space and overhead related to VM management on
dedicated storage nodes, which can improve performance
and/or quality-of-service guarantees for specialized storage
services that the applications running inside the VMs
require and are often offered by the cloud provider (e.g.,
database engines, distributed hash tables, special purpose
file systems, etc.).
OPTIMIZE VM DISK
When a new VM needs to be instantiated, the underlying
VM image is presented to the hypervisor as a regular file
accessible from the local disk. Read and write accesses to
the file, however, are trapped and treated in a special
fashion. A read that is issued on a fully or partially empty
region in the file that has not been accessed before (by
either a previous read or write) results in fetching the
missing content remotely from the VM repository,
mirroring it on the local disk and redirecting the read to the
local copy. If the whole region is available locally, no
remote read is performed. Writes, on the other hand, are
always performed locally.
REDUCE CONTENTION BY STRIPING THE IMAGE
Each VM image is split into small, equal-sized chunks that
are evenly distributed among the local disks participating in
the shared pool. When a read accesses a region of the
image that is not available locally, the chunks that hold this
region are determined and transferred in parallel from the
remote disks that are responsible for storing them. Under
concurrency, this scheme effectively enables the
distribution of the I/O workload, because accesses to
different parts of the image are served by different disks.

S. Komal Kaur et al IJCSET |August 2012 | Vol 2, Issue 8, 1365-1368 ISSN:2231-0711

Available online at www.ijcset.net 1366

OPTIMIZE MULTISNAPSHOTTING BY MEANS OF SHADOWING AND

CLONING
Saving a full VM image for each VM is not feasible in the
context of multisnapshotting. Since only small parts of the
VMs are modified, this would mean massive unnecessary
duplication of data, leading not only to an explosion of
utilized storage space but also to an unacceptably high
snapshotting time and network bandwidth utilization.

IV. ARCHITECTURE

The simplified architecture of a cloud that integrates our
approach is depicted in Figure3.The typical elements found
in the cloud are illustrated with a light background, while
the elements that are part of our proposal are highlighted by
a darker background. A distributed versioning storage
service that supports cloning and shadowing is deployed on
the compute nodes and consolidates parts of their local
disks into a common storage pool. The cloud client has
direct access to the storage service and is allowed to upload
and download images from it. Every uploaded image is
automatically striped. Furthermore, the cloud client
interacts with the cloud middleware through a control API
that enables a variety of management tasks, including
deploying an image on a set of compute nodes, dynamically
adding or removing compute nodes from that set, and
snapshotting individual VM instances or the whole set.
The cloud middleware in turn coordinates the compute
nodes to achieve the afore mentioned management tasks.
Each compute node runs a hypervisor that is responsible for
running the VMs. The reads and writes of the hypervisor
are trapped by the mirroring module, which is responsible
for on-demand mirroring and snapshotting and relies on
both the local disk and the distributed versioning storage
service to do so. The cloud middleware interacts directly
with both the hypervisor, telling it when to start and stop
VMs, and the mirroring module, telling it what image to
mirror from the repository, when to create a new image
clone (CLONE), and when to persistently store its local
modifications (COMMIT).
Both CLONE and COMMIT are control primitives that
result in the generation of a new, fully independent VM
image that is globally accessible through the storage service
and can be deployed on other compute nodes or
manipulated by the client. A global snapshot of the whole
application, which involves taking a snapshot of all VM
instances in parallel, is performed in the following fashion.
The first time the snapshot is taken, CLONE is broadcast to
all mirroring modules,followed by COMMIT. Once a clone
is created for each VM instance, subsequent global
snapshots are performed by issuing each mirroring module
a COMMIT to its corresponding clone.
ZOOM ON MIRRORING
One important aspect of on-demand mirroring is the
decision of how much to read from the repository when
data is unavailable locally, in such way as to obtain a good
access performance.
A straightforward approach is to translate every read issued
by the hypervisor in either a local or remote read,
depending on whether the requested content is locally
available. While this approach works, its performance is
questionable. More specifically, many small remote read

requests to the same chunk generate significant network
traffic overhead (because of the extra networking
information encapsulated with each request), as well as low
throughput .

FIG 3. ARCHITECTURE OF A CLOUD

 V. EVALUATION

PERFORMANCE OF MULTIDEPLOYMENT
The first series of experiments evaluates how well our
approach performs under the multideployment pattern,
when a single initial VM image is used to concurrently
instantiate a large number of VM instances.

Fig 4 : Cloning and Shadowing by means of Segment Trees

Prepropagation
It is the most common method used on clouds. It consists of
two phases. In the first phase the VM image is broadcast to
the local storage of all compute nodes that will run a VM
instance. Once the VM image is available locally on all
compute nodes, in the second phase all VMs are launched
simultaneously. Since in this phase all content is available
locally, no remote read access to the repository is
necessary.
Qcow2 over PVFS
The second method we compare against is closer in concept
to our own approach. We assume that the initial VM image
is stored in a striped fashion on a distributed file system.
We have chosen to use PVFS [9] to fill this role, as it is
specifically geared to high performance and employs a
distributed metadata management scheme that avoids any

S. Komal Kaur et al IJCSET |August 2012 | Vol 2, Issue 8, 1365-1368 ISSN:2231-0711

Available online at www.ijcset.net 1367

potential bottlenecks due to metadata centralization. PVFS
is deployed on all available compute nodes, as is our
approach, and is responsible for aggregating their local
storage space in a common pool. To instantiate a new set of
VM instances on the compute nodes, in a first initialization
phase we create a new qcow2 [12] copy-on-write image in
the local file system of each compute node, using the initial
raw 2 GB VM image stored in PVFS as the backing image.

MULTISNAPSHOTTING PERFORMANCE
This evaluates the performance of our approach in the
context of the multisnapshotting access pattern. Since it is
infeasible to copy back to the NFS server the whole set of
full VM images that include the local modifications done
by each VM instance, we limit the comparison of our
approach with qcow2 over PVFS only.
The experimental setup is similar to the one used in the
previous section: BlobSeer and PVFS are deployed on the
compute nodes, and the initial 2 GB VM image is stored in
a striped fashion on them, in chunks of 256 KB. The local
modifications of each VM image are considered to be
small, around 15 MB; this corresponds to the operating
system and application writing configuration files and
contextualizing the deployment, which simulates a setting
with negligible disk access. In the case of qcow2 over
PVFS, the snapshot is taken by concurrently copying the
set of qcow2 files locally available on the compute nodes
back to PVFS. In the case of our approach, the images are
snapshotted in the following fashion: first a CLONE,
followed by a COMMIT is broadcast to all compute nodes
hosting the VMs. In both cases, the snapshotting process is
synchronized to start at the same time.

The average time to snapshot per instance is depicted in
Figure 5(a). As can be observed, both in our approach and
qcow2 over PVFS, average snapshotting time increases
almost imperceptibly at a very slow rate. The reason is that
an increasing number of compute nodes will always have at
least as many local disks available to distribute the I/O
workload, greatly reducing write contention. Since
BlobSeer uses an asynchronous write strategy that returns
to the client before data was committed to disk, initially the
average snapshotting time is much better, but it gradually
degrades as more concurrent instances generate more write
pressure that eventually has to be committed to disk. The
performance level is closing to the same level as qcow2
over PVFS, which essentially is a parallel copy of the
qcow2 files.

VI. CONCLUSIONS
As cloud computing becomes increasingly popular,
efficient management of VM images, such as image
propagation to compute nodes and image snapshotting for
checkpointing or migration, is critical. The performance of
these operations directly affects the usability of the benefits
offered by cloud computing systems. This paper introduced
several techniques that integrate with cloud middleware to
efficiently handle two patterns: multideployment and
multisnapshotting. We demonstrated the benefits of our
approach through experiments on hundreds of nodes using
benchmarks as well as real-life applications. Compared
with simple approaches based on prepropagation, our
approach shows a major improvement in both execution
time and resource usage: the total time to perform a
multideployment was reduced by up to a factor of 25, while
the storage and bandwidth usage was reduced by as much
as 90%.

ACKNOWLEDGMENT

The experiments presented in this paper were carried out
just a survey on how the cloud computing can be able to
deploy large number of virtual machines simultaneously
and also snapsnot of all the deployment even concurrently,
using the amazon.org.

REFERENCES

[1] Amazon elastic block storage (ebs).http://aws.amazon.com/ebs/.
[2] File system in userspace (fuse).http://fuse.sourceforge.net.
[3] Nimbus. http://www.nimbusproject.org/.
[4] Opennebula. http://www.opennebula.org/.
[5] Amazon Elastic Compute Cloud (EC2).http://aws.amazon.com/ec2/.
[6] Amazon Simple Storage Service (S3).http://aws.amazon.com/s3/.
[7] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia..
[8] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the

postal model for message-passing systems. In SPAA ’92:
Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 13–22, New York, 1992. ACM.

[9] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. Pvfs: A
parallel file system for Linux clusters. In Proceedings of the 4th
Annual Linux Showcase and Conference, pages 317–327, Atlanta,
GA, 2000. USENIX Association.Symposium on Operating Systems
Principles, pages 205–220, New York, 2007. ACM.

[10] B. Claudel, G. Huard, and O. Richard. Taktuk, adaptive deployment
of remote executions. In HPDC ’09: Proceedings of the 18th ACM
International Symposium on High Performance Distributed
Computing, pages 91–100, New York, 2009. ACM.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store. In SOSP ’07:
Proceedings of 21st ACM SIGOPS

[12] M. Gagné. Cooking with Linux—still searching for the ultimate
Linux distro? Linux J., 2007(161):9, 2007.

[13] J. G. Hansen and E. Jul. Scalable virtual machine storage using local
disks. SIGOPS Oper. Syst. Rev.

[14] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. arb. Fast, scalable
disk imaging with Frisbee. In ATC ’03: Proceedings of the 2003
USENIX Annual Technical Conference, pages 283–296, San
Antonio, TX, 2003.

[15] Y. Jégou, S. Lantéri, J. Leduc, M. Noredine, G. Mornet, R. Namyst, P.
Primet, B. Quetier, O. Richard, E.-G. Talbi, and T. Iréa. Grid’5000:
A large scale and highly reconfigurable experimental grid testbed.
International Journal of High Performance Computing Applications,
20(4):481–494, November 2006.

S. Komal Kaur et al IJCSET |August 2012 | Vol 2, Issue 8, 1365-1368 ISSN:2231-0711

Available online at www.ijcset.net 1368

