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Abstract— With Infrastructure-as-a-Service (IaaS) cloud 
economics getting increasingly complex and dynamic, 
resource costs can vary greatly over short periods of time. 
Therefore, a critical issue is the ability to deploy and snapshot, 
for that it require to boot and terminate VMs very quickly, 
which enables cloud users to exploit elasticity to find the 
optimal trade-off between the computational needs (number 
of resources, usage time)and budget constraints. This paper 
proposes a concept which reduces the time required to 
simultaneously boot a large number of VM instances on 
clouds from the same initial VM image (multi-deployment). 
Our proposal was not only to deploy large number of client 
system but also to snapshot the large number of Virtual 
images which is done concurrently.  Large scale experiments 
under concurrency on hundreds of nodes show that 
introducing such a technique which improves infrastructure 
service by using or by sharing the resources. 
 
Keywords— virtual machine, virtual image, Multideployment, 
Multisnapshotting. 
 

I.  INTRODUCTION 
Cloud computing is the use of computing resources 
(hardware and software) that are delivered as a service over 
a network (typically the Internet). The name comes from 
the use of a cloud-shaped symbol as an abstraction for the 
complex infrastructure it contains in system diagrams. 
Cloud computing entrusts remote services with a user's 
data, software and computation. 
1.1 There are many types of public cloud computing:[1] 

 Infrastructure as a service (IaaS), 
 Platform as a service (PaaS), 
 Software as a service (SaaS) 
 Storage as a service (STaaS) 
 Security as a service (SECaaS) 
 Data as a service (DaaS) 
 Business process as a service (BPaaS) 
 Test environment as a service (TEaaS) 
 Desktop as a service (DaaS) 
 API as a service (APIaaS) 

End-user access cloud based applications through a web 
browser or a light-weight desktop or mobile app while the 
business and user's data are stored on servers at a remote 
location. Proponents claim that cloud computing allows 
enterprises to get their applications up and running faster, 
with improved manageability and less maintenance, and 
enables IT to more rapidly adjust resources to meet 
fluctuating and unpredictable business 
demand.[2][3].Cloud computing relies on sharing of 
resources to achieve coherence and economies of 

scale similar to a utility (like the electricity grid) over a 
network 

 
Fig1. Types of Cloud Computing 

 
                                 II.   INFRASTRUCTURE AS A SERVICE 
In this most basic cloud service model, cloud providers 
offer computers, as physical or more often as virtual 
machines, and other resources. The virtual machines are 
run as guests by a hypervisor, such as Xen or KVM. 
Management of pools of hypervisors by the cloud 
operational support system leads to the ability to scale to 
support a large number of virtual machines. Other 
resources in IaaS clouds include images in a virtual 
machine image library, raw (block) and file-based storage, 
firewalls, load balancers, IP addresses, virtual (VLANs), 
and software bundles.[4] IaaS cloud providers supply these 
resources on demand from their large pools installed in data 
centers. For wide area connectivity, the Internet can be 
used or—in carrier clouds -- dedicated virtual private 
networks can be configured. 
 To deploy their applications, cloud users then install 

operating system images on the machines as well as 
their application software. In this model, it is the cloud 
user who is responsible for patching and maintaining 
the operating systems and application software. Cloud 
providers typically bill IaaS services on a utility 
computing basis, that is, cost will reflect the amount of 
resources allocated and consumed. 

 IaaS refers not to a machine that does all the work, but 
simply to a facility given to businesses that offers users 
the leverage of extra storage space in servers and data 
centers. 

 Examples of IaaS include: Amazon CloudFormation 
(and underlying services such as Amazon 
EC2), Rackspace Cloud, Google Compute Engine, and 
RightScale. 
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Fig .2  Cloud Infrastructure 

 
ADVANTAGES:  
More and more companies are moving from traditional 
servers to virtual servers in the cloud, and many new 
service-based deployments are starting in the cloud. 
However, despite the overwhelming popularity of the cloud 
here, deployments in the cloud look a lot like deployments 
on traditional servers. Companies are not changing their 
systems architecture to take advantage of some of the 
unique aspects of being in the cloud. 
The key difference between remotely-hosted, virtualized, 
on-demand-by-API servers (the definition of the “cloud” 
for this post) and any other hardware-based deployment 
(e.g., dedicated, co-located, or not-on-demand-by-API 
virtualized servers) is that servers are software on the 
cloud. 
APPLICATION STATE 
The state of the VM deployment is defined at each moment 
in time by two main components: the state of each of the 
VM instances and the state of the communication channels 
between them. For VM instances that need large amounts 
of memory, the necessary storage space can explode to 
huge sizes. For example, saving 2 GB of RAM for 1,000 
VMs consumes 2 TB of space, which is unacceptable for a 
single one point-in-time deployment checkpoint.Therefore, 
can further be simplified such that the VM state is 
represented only by the virtual disk attached to it ,which is 
used to store only minimal information about the state, such 
as configuration files that describe the environment and 
temporary files that were generated by the application. This 
information is then later used to reboot and reinitialize the 
software stack running inside the VM instance. 
Such an approach has two important practical benefits: 
(1) huge reductions in the size of the state, since the 

contents of RAM, CPU registers, and the like does not 
need to be saved; and 

(2) portability, since the VM can be restored on another 
host without having to worry about restoring the state 
of hardware devices that are not supported or are 
incompatible between different hypervisors. 

Since Model is the most widely used checkpointing 
mechanism in practice, we consider the multisnapshotting 
pattern. 
APPLICATION ACCESS PATTERN 
A VM typically does not access the whole initial image. 
For example, it may never access some applications and 
utilities that are installed by default with the operating 

system. In order to model this aspect, it is useful to analyze 
the life-cycle of a VM instance, which consists of three 
phases: 
 Boot phase: involves reading configuration files and 

launching processes, which translates to random 
small reads and writes from/to the VM disk image 
acting as the initial state. 

 Application phase: translates to either negligible 
virtual disk access (e.g., CPU-intensive applications 
that do not require persistent storage or data 
intensive applications that rely on dedicated               
storage services such as Amazon S3 [6]). 

 Shutdown phase: generates negligible disk access to 
the image and is completely missing if the VM 
instance was terminated prematurely. 
 

III.   DESIGN MODEL 
We rely on four key principles: aggregate the storage space, 
optimize VM disk access, reduce contention, and optimize 
multisnapshotting. 
AGGREGATE THE STORAGE SPACE 
We propose to aggregate the storage space from the 
compute nodes in a shared common pool that is managed in 
a distributed fashion, on top of which we build our virtual 
file system. This approach has two key advantages. First, it 
has a potential for high scalability, as a growing number of 
compute nodes automatically leads to a larger VM image 
repository, which is not the case if the repository is hosted 
by dedicated machines. Second, it frees a large amount of 
storage space and overhead related to VM management on 
dedicated storage nodes, which can improve performance 
and/or quality-of-service guarantees for specialized storage 
services that the applications running inside the VMs 
require and are often offered by the cloud provider (e.g., 
database engines, distributed hash tables, special purpose 
file systems, etc.). 
OPTIMIZE VM DISK 
When a new VM needs to be instantiated, the underlying 
VM image is presented to the hypervisor as a regular file 
accessible from the local disk. Read and write accesses to 
the file, however, are trapped and treated in a special 
fashion. A read that is issued on a fully or partially empty 
region in the file that has not been accessed before (by 
either a previous read or write) results in fetching the 
missing content remotely from the VM repository, 
mirroring it on the local disk and redirecting the read to the 
local copy. If the whole region is available locally, no 
remote read is performed. Writes, on the other hand, are 
always performed locally. 
REDUCE CONTENTION BY STRIPING THE IMAGE 
Each VM image is split into small, equal-sized chunks that 
are evenly distributed among the local disks participating in 
the shared pool. When a read accesses a region of the 
image that is not available locally, the chunks that hold this 
region are determined and transferred in parallel from the 
remote disks that are responsible for storing them. Under 
concurrency, this scheme effectively enables the 
distribution of the I/O workload, because accesses to 
different parts of the image are served by different disks. 
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OPTIMIZE MULTISNAPSHOTTING BY MEANS OF SHADOWING AND 

CLONING 
Saving a full VM image for each VM is not feasible in the 
context of multisnapshotting. Since only small parts of the 
VMs are modified, this would mean massive unnecessary 
duplication of data, leading not only to an explosion of 
utilized storage space but also to an unacceptably high 
snapshotting time and network bandwidth utilization. 

 
IV.   ARCHITECTURE 

The simplified architecture of a cloud that integrates our 
approach is depicted in Figure3.The typical elements found 
in the cloud are illustrated with a light background, while 
the elements that are part of our proposal are highlighted by 
a darker background. A distributed versioning storage 
service that supports cloning and shadowing is deployed on 
the compute nodes and consolidates parts of their local 
disks into a common storage pool. The cloud client has 
direct access to the storage service and is allowed to upload 
and download images from it. Every uploaded image is 
automatically striped. Furthermore, the cloud client 
interacts with the cloud middleware through a control API 
that enables a variety of management tasks, including 
deploying an image on a set of compute nodes, dynamically 
adding or removing compute nodes from that set, and 
snapshotting individual VM instances or the whole set.          
The cloud middleware in turn coordinates the compute 
nodes to achieve the afore mentioned management tasks. 
Each compute node runs a hypervisor that is responsible for 
running the VMs. The reads and writes of the hypervisor 
are trapped by the mirroring module, which is responsible 
for on-demand mirroring and snapshotting and relies on 
both the local disk and the distributed versioning storage 
service to do so. The cloud middleware interacts directly 
with both the hypervisor, telling it when to start and stop 
VMs, and the mirroring module, telling it what image to 
mirror from the repository, when to create a new image 
clone (CLONE), and when to persistently store its local 
modifications (COMMIT). 
Both CLONE and COMMIT are control primitives that 
result in the generation of a new, fully independent VM 
image that is globally accessible through the storage service 
and can be deployed on other compute nodes or 
manipulated by the client. A global snapshot of the whole 
application, which involves taking a snapshot of all VM 
instances in parallel, is performed in the following fashion. 
The first time the snapshot is taken, CLONE is broadcast to 
all mirroring modules,followed by COMMIT. Once a clone 
is created for each VM instance, subsequent global 
snapshots are performed by issuing each mirroring module 
a COMMIT to its corresponding clone. 
ZOOM ON MIRRORING 
One important aspect of on-demand mirroring is the 
decision of how much to read from the repository when 
data is unavailable locally, in such way as to obtain a good 
access performance. 
A straightforward approach is to translate every read issued 
by the hypervisor in either a local or remote read, 
depending on whether the requested content is locally 
available. While this approach works, its performance is 
questionable. More specifically, many small remote read 

requests to the same chunk generate significant network 
traffic overhead (because of the extra networking 
information encapsulated with each request), as well as low 
throughput . 

FIG 3. ARCHITECTURE OF A CLOUD 
 
                         V.  EVALUATION 

PERFORMANCE OF MULTIDEPLOYMENT 
The first series of experiments evaluates how well our 
approach performs under the multideployment pattern, 
when a single initial VM image is used to concurrently 
instantiate a large number of VM instances. 
 

 
Fig 4 : Cloning and Shadowing by means of Segment Trees 

 
Prepropagation  
It is the most common method used on clouds. It consists of 
two phases. In the first phase the VM image is broadcast to 
the local storage of all compute nodes that will run a VM 
instance. Once the VM image is available locally on all 
compute nodes, in the second phase all VMs are launched 
simultaneously. Since in this phase all content is available 
locally, no remote read access to the repository is 
necessary. 
Qcow2 over PVFS 
The second method we compare against is closer in concept 
to our own approach. We assume that the initial VM image 
is stored in a striped fashion on a distributed file system. 
We have chosen to use PVFS [9] to fill this role, as it is 
specifically geared to high performance and employs a 
distributed metadata management scheme that avoids any 
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potential bottlenecks due to metadata centralization. PVFS 
is deployed on all available compute nodes, as is our 
approach, and is responsible for aggregating their local 
storage space in a common pool. To instantiate a new set of 
VM instances on the compute nodes, in a first initialization 
phase we create a new qcow2 [12] copy-on-write image in 
the local file system of each compute node, using the initial 
raw 2 GB VM image stored in PVFS as the backing image. 
 
MULTISNAPSHOTTING PERFORMANCE 
This evaluates the performance of our approach in the 
context of the multisnapshotting access pattern. Since it is 
infeasible to copy back to the NFS server the whole set of 
full VM images that include the local modifications done 
by each VM instance, we limit the comparison of our 
approach with qcow2 over PVFS only. 
The experimental setup is similar to the one used in the 
previous section: BlobSeer and PVFS are deployed on the 
compute nodes, and the initial 2 GB VM image is stored in 
a striped fashion on them, in chunks of 256 KB. The local 
modifications of each VM image are considered to be 
small, around 15 MB; this corresponds to the operating 
system and application writing configuration files and 
contextualizing the deployment, which simulates a setting 
with negligible disk access. In the case of qcow2 over 
PVFS, the snapshot is taken by concurrently copying the 
set of qcow2 files locally available on the compute nodes 
back to PVFS. In the case of our approach, the images are 
snapshotted in the following fashion: first a CLONE, 
followed by a COMMIT is broadcast to all compute nodes 
hosting the VMs. In both cases, the snapshotting process is 
synchronized to start at the same time. 
 

 
The average time to snapshot per instance is depicted in 
Figure 5(a). As can be observed, both in our approach and 
qcow2 over PVFS, average snapshotting time increases 
almost imperceptibly at a very slow rate. The reason is that 
an increasing number of compute nodes will always have at 
least as many local disks available to distribute the I/O 
workload, greatly reducing write contention. Since 
BlobSeer uses an asynchronous write strategy that returns 
to the client before data was committed to disk, initially the 
average snapshotting time is much better, but it gradually 
degrades as more concurrent instances generate more write 
pressure that eventually has to be committed to disk. The 
performance level is closing to the same level as qcow2 
over PVFS, which essentially is a parallel copy of the 
qcow2 files. 

VI. CONCLUSIONS 
As cloud computing becomes increasingly popular, 
efficient management of VM images, such as image 
propagation to compute nodes and image snapshotting for 
checkpointing or migration, is critical. The performance of 
these operations directly affects the usability of the benefits 
offered by cloud computing systems. This paper introduced 
several techniques that integrate with cloud middleware to 
efficiently handle two patterns: multideployment and 
multisnapshotting. We demonstrated the benefits of our 
approach through experiments on hundreds of nodes using 
benchmarks as well as real-life applications. Compared 
with simple approaches based on prepropagation, our 
approach shows a major improvement in both execution 
time and resource usage: the total time to perform a 
multideployment was reduced by up to a factor of 25, while 
the storage and bandwidth usage was reduced by as much 
as 90%. 
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