

Important Aspects of Parallel Computing

Rafiqul Zaman Khan, Javed Ali

Department of Computer Science,
Aligarh Muslim University, Aligarh

Abstract-Parallel computing is a form of computation in which
many calculations are carried out simultaneously. It operates on
the principle that large problems can often be divided into
smaller ones, which can be solved concurrently. In a distributed
system, all processing elements are connected by a network.
Parallel computing becomes the dominant paradigm in
computer architecture, mainly in the form of multi-core
processors. Data parallel programming is one which each
process executes the same action concurrently, but on different
parts of shared data. While in task parallel approach, every
process performs a different step of computation on the same
data.

Keywords: Directed Acyclic Graph, Parallel Computing,
Throughput, Scheduling etc.

1.1 INTRODUCTION

In traditional scheduling, scheduling is defined as the
allocation of operations to processing units. One of the
primary differences between traditional and parallel
computing scheduling is that the parallel computing
scheduler does not have full control over parallel computing
systems. More specifically, local resources are not controlled
by the parallel computing scheduler, but by local scheduler.
Another difference is that parallel computing scheduler
cannot assume that it has a global view of parallel computing.
The difference occurs mainly due to the dynamic nature of
resources and constraints in parallel computing environment.
Issues on the basis of which differences could be considered
are as follows:
1.2 Task partitioning constraints in parallel computing:
Scheduling constraints can be hard or soft. Hard constraints
are rigidly enforced. Soft constraints are those that are
desirable but not absolutely essential. Soft constraints are
usually combined into an objective function.
1.3 Optimization criteria for parallel computing
scheduling: A variety of optimization criteria for parallel
computing scheduling is given below:
1. Minimization of inter-process communication cost, sleek

time (processor utilization time) and NSL (Normalized
Schedule Length).

2. Maximization of personal or general utility, resource
utilization, fairness etc.

1.4 Data scheduling: A variety of data is necessary for a
scheduler to describe the jobs and resources [7] e.g. Job
length, resource requirement estimation, time profiles,
uncertain estimation etc.
1.5 Methodologies: It is obvious that there is no
deterministic scheduling method which shows ideal results

for parallel computing scheduling. But in conventional
scheduling many appropriate methods are available.

2.1 ISSUES AND CHALLENGES IN PARALLEL COMPUTING

Parallel computing is emerging as a viable option for high
performance parallel computing. Sharing of resources in
parallel computing provides improved performance at low
cost. In parallel computing there are various issues such as:
2.1.1 Role of server system: Server system plays a major
part in the parallel computing heterogeneous system as
today’s server systems are relatively small and they are
connected to networks by the interfaces [14]. So these
systems must be supporting for high performance computing
architectures.

3.1 THREADS IN PARALLEL PROCESSING ALGORITHM
A program in execution is known as a process. Light weight
processes are called threads. The commonly used term thread
is taking from thread of control which is just a sequence of
statements in a program. In shared memory architectures, a
single process may have multiple thread of control. Dynamic
threads are used in shared memory architectures. In dynamic
threads, the master thread controls the collection of workers
threads. The master thread forks worker threads, these threads
complete assigned request and after termination it again joins
a master thread. This facility makes the efficient use of
system resources, because only at the time of running state
resources are used by threads. This phenomenon reduces idle
time of the participating processors. These facilities of
threads maximize throughput and try to minimize the
communication overhead. Static threads are generated by the
required setup which is known in advance.
3.1.1 Threads benefits: Multiple threads programming have
the following benefits.
3.1.2 Responsiveness: If some threads are damaged or
blocked in multithreading applications then it allows a
program to run continuously. It facilitates user interaction
even if a process is loaded in another thread. So it increases
the responsiveness of users.
3.1.3 Economy and resource sharing: During the execution
of the process it’s very costly to allocate memory in
traditional parallel computing environments. In
multithreading, all threads of a process can share allocated
resources. So the creation and context switching of the
threads of a process is economical. Because the creation and
allocation of a process are much more time consuming than
threads. So thread generates a very low overhead in the

Rafiqul Zaman Khan et al | IJCSET | November 2013 | Vol 3, Issue 11, 431-433 www.ijcset.net | ISSN:2231-0711

431

comparison of processes. Creating a process is thirty time
slower than creating a thread in Solaris systems. Context

switching is times slower in processes than threads. The

thread code sharing facility provides an application to have
several different threads of activities within the same address
space. These threads may share resources effectively and
efficiently.
3.1.4 Utilization of multiprocessor architectures: Each
thread of all processes may run simultaneously upon different
processors. Kernel level threads parallelization increases the
usage of processors. Kernel level threads are supported
directly by the operating systems without user thread
interventions. While in traditional multiprogramming, kernel
level processes can’t be generated by the operating systems.

4.0 DAG IN DIFFERENT SCHEDULING ENVIRONMENTS
Any parallel program may be represented by DAG. In the
execution of parallel tasks more than one computing units
required concurrently [21]. DAG scheduling has been
investigated on a set of homogeneous and heterogeneous
environments. In heterogeneous systems, it has different
speed and execution capabilities. The computing
environments are connected by the networks of different
topologies. These topologies (ring, star, mesh, hypercube
etc.) may be partially or fully connected. Minimization of the
execution time is the main objective of DAG. It allocates the
tasks to the participating processors by preserving precedence
constraints. Scheduling length of a schedule (program) is the
overall finish time of the program. This scheduling length is
termed as the mean flow time [2, 17] or earliest finish time in
many proposed algorithms.
In DAG a parallel program is represented by

where V is the set of nodes and is the set of directed

edges A set of instructions which can be sequentially on

the same processor without preemption is known as a node on
DAG. Every edge (,) is the corresponding computation

message amongst node by preserving the precedence
constraints. The communication cost of the nodes is denoted
by (,). Sink node is called child node and source node is

called the parent node of a DAG. A node without child node
is known as an exit node while a node without parent node is
called an entry node. Precedence constraints mean that child
node can’t be executed without the execution of parent node.
If two nodes are assigned on same processor then
communication cost between them is assumed to be zero.
The loop structure of the program can’t be explicitly modeled
in the DAG. Loop separation techniques [4, 18] divide the
loop into many tasks. All iterations of loop started
concurrently with the help of DAG. This model can be used
for large matrix multiplications and data flow problems. Fast
Fourier Transformation (FFT) or Gaussian Elimination
(numerical applications) loop bound must be known at the
time of compilation. So many iterations of a loop can be

encapsulated in a task. Message passing primitives and
memory access operations are means of calculation of node
weight and edge weight [15]. The granularity of tasks is also
divided by the programmer [16]. The scheduling algorithms
[22] are used to refine the granularity of DAG.
Preemptive and non-preemptive scheduling approaches
investigated by [3] in homogeneous computing architectures.
They used independent tasks without having precedence
constraints. In DAG, condition of precedence constraints is
inserted by Chung and Ranka [6] for preemptive and non-
preemptive scheduling. Earliest time factor inserted by them
in list scheduling strategies.
In preemptive scheduling, a partial portion of the task can be
reallocated to the different processors [11, 13,19]. While in
the case of no-preemptive scheduling, allocated processors
can’t be re-allocated until it finishes assigned tasks.
Flexibility and resource utilization of the preemptive
scheduling is more than non-preemptive scheduling in a
theoretical manner. Practically, re-assigning partial part of
task causes extra overhead. Preemptive scheduling shows
polynomial time solutions while non-preemptive are NP-
complete [5, 10]. Scheduling with duplication upon different
processors is also NP-complete. Communication delay
amongst preemptive tasks is more due to preemptions of
processors.
Problems of conditional branches may be analyses by DAG.
Scheduling of probabilistic branches reported in[20]. In this
scheduling, each branch is associated with some non-zero
probability having some precedence constraints. Towsley
[20] used two step methods to generate a schedule. In first
step, he tries to minimize the amount of indeterminism.
While in second step, reduced DAG may be generated by
using pre-processor methods. Problem of conditional
branches is also investigated in [9] by merging schedules to
generate a unified schedule.

CONCLUSION
This paper represents the fundamental concepts of parallel
computing in efficient and effective manner. Thread concept
is highly important in high performance computing systems.
To maximize throughput threads play an important role to
reduce inter-process communication cost. A researcher may
use thread to calculate high computing problems. Therefore
DAG and thread are highly useful parameters for parallel
computing environment

REFERENCES
[1] G. M. Amdahl, “Validity of the Single-Processor Approach to

Achieving Large Scale Computing Capabilities,” In AFIPS Conference
Proceedings, (1967), 480–481.

[2] J. Bruno, E. G. Coffman and R. Sethi, “Scheduling Independent Tasks
to Reduce Mean Finishing Time,” Commun. ACM 17, 7 (July), (1974),
380–390.

[3] J. Blazewicz, J. Weglarz and M. Drabowski, “Scheduling Independent
2-Processor Tasks to Minimize Schedule Length,” Inf. Process.Lett. 18,
5 (June) (1984), 267–273.

[4] M. Beck, K. Pingali and A. Nicolau, “Static Scheduling for Dynamic
Dataflow Machines,” J. Parallel Distrib. Comput. 10, 4 (Dec.) (1990),
275–291.

Rafiqul Zaman Khan et al | IJCSET | November 2013 | Vol 3, Issue 11, 431-433 www.ijcset.net | ISSN:2231-0711

432

[5] E. G. Coffman and R. L. Graham, “Optimal Scheduling for Two-
Processor Systems,” Acta Inf. 1, (1972), 200–213.

[6] Y. C. Chung and S. Ranka, “Applications and Performance Analysis of
a Compile-Time Optimization Approach for List Scheduling Algorithm
on Distributed Memory Multiprocessors,” In Proceedings of the 1992
Conferenceon Supercomputing (Supercomputing ’92, Minneapolis,
MN, Nov. 16–20), R. Werner, Ed. IEEE Computer Society Press, Los
Alamitos, CA, (1992), 515–525.

[7] R. Cheng, M. Gen and Y. Tsujimura, “A Tutorial Survey of Job-Shop
Scheduling Problems using Genetic Algorithms,” Comput. Ind. Eng.
30, 4, (1996), 983–997.

[8] A. W. David and D. H. Mark, “Cost-Effective Parallel Computing,”
IEEE Computer, (1995), 67–71.

[9] El-Rewini and M. A. Hesham, “Static Scheduling of Conditional
Branches in Parallel Programs,” J. Parallel Distrib. Comput. 24, 1 (Jan.
1995), 41–54.

[10] T. Gonzalez and S. Sahni, “Preemptive Scheduling of Uniform
Processor Systems,” J.ACM 25, 1 (Jan), (1978), 92–101.

[11] Gustafson, J.L., "Reevaluating Amdahl's Law," Ames lab web
link
http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html,
June 1996.

[12] E. C. Horvath, S. Lam and R, “Sethi, A Level Algorithm for
Preemptive Scheduling,” J. ACM 24, 1 (Jan.), (1977), 36–47.

[13] T. Haluk, H. Salim and Y. W. Min, “Performance-Effective and
Low Complexity Task Scheduling for Heterogeneous
Computing,” IEEE transactionson parallel and Distributed systems,
Vol. 13, No. 3, (2002) 262-279.

[14] H. Jiang, L. N. Bhuyan, and D. Ghosal, “Approximate Analysis
of Multiprocessing Task Graphs,” In Proceedings of the International
Conference on Parallel Processing (Aug), (1990), 230–238.

[15] Y. K. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary
Task Graphs to Multiprocessors using a Parallel Genetic Algorithm,” J.
Parallel Distrib. Comput. 47, 1, (1997) 55–78.

[16] J. Y. T. Leung and G. H. Young, “Minimizing Schedule Length
Subject to Minimum Flow Time,” SIAM J. Comput. 18, 2 (Apr),
(1989), 310–333.

[17] B. Lee, A. R. Hurson and T. Y. Feng, “A Vertically Layered
Allocation Scheme for Data Flow Systems,” J. Parallel Distrib.
Comput. 11, 3 (Mar.), (1991), 172–190.

[18] V.J. Rayward-Smith, “The Complexity of Preemptive
Scheduling Given Inter-processor Communication Delays,” Inf.
Process. Lett. 25, 2 (6 May), (1987), 120–128.

[19] D. Towsley, “Allocating Programs Containing Branches and
Loops within a Multiple Processor System,” IEEE Trans. Softw. Eng.
SE-12, 10 (Oct.), (1986), 1018–1024.

[20] Q. Wang, and K. H. Cheng, “List scheduling of parallel tasks,”
Inf. Process. Lett. 37, 5 (Mar.), (1991), 289–295.

[21] T. Yang and A. Gerasoulis, “PYRROS: Static Task Scheduling
and Code Generation for Message Passing Multiprocessors,” In
Proceedings of the 1992 international conference on Supercomputing
(ICS ’92, Washington, DC , K. Kennedy and C. D. Polychronopoulos,
Eds. ACM Press, New York, NY, (1992), 428–437.

AUTHORS:
 Dr. Rafiqul Zaman Khan:

Dr. Rafiqul Zaman Khan, is presently working as a Associate Professor in
the Department of Computer Science at Aligarh Muslim University, Aligarh,
India. He received his B.Sc Degree from M.J.P Rohilkhand University,
Bareilly, M.Sc and M.C.A from A.M.U. and Ph.D (Computer Science) from
Jamia Hamdard University. He has 18 years of Teaching Experience of
various reputed International and National Universities viz King Fahad
University of Petroleum & Minerals (KFUPM), K.S.A, Ittihad University,
U.A.E, Pune University, Jamia Hamdard University and AMU, Aligarh. He
worked as a Head of the Department of Computer Science at Poona College,
University of Pune. He also worked as a Chairman of the Department of
Computer Science, AMU, Aligarh. His Research Interest includes Parallel &
Distributed Computing, Gesture Recognition, Expert Systems and Artificial
Intelligence. Presently 04 students are doing PhD under his supervision.
He has published about 45 research papers in International
Journals/Conferences. Names of some Journals of repute in which recently
his articles have been published are International Journal of Computer
Applications (ISSN: 0975-8887), U.S.A, Journal of Computer and
Information Science (ISSN: 1913-8989), Canada, International Journal of
Human Computer Interaction (ISSN: 2180-1347), Malaysia, and Malaysian
Journal of Computer Science(ISSN: 0127-9084), Malaysia. He is the
Member of Advisory Board of International Journal of Emerging
Technology and Advanced Engineering (IJETAE), Editorial Board of
International Journal of Advances in Engineering & Technology (IJAET),
International Journal of Computer Science Engineering and Technology
(IJCSET), International Journal in Foundations of Computer Science &
technology (IJFCST) and Journal of Information Technology, and
Organizations (JITO).

 Javed Ali:

Javed Ali is a research scholar in the Department of Computer Science,
Aligarh Muslim University, Aligarh. His research interest include parallel
computing in distributed systems. He did Bsc(Hons) in mathematics and
MCA from Aligrah Muslim University ,Aligarh. He published seven
international research papers in reputed journals. He received state level
scientist award by the government of India.

Rafiqul Zaman Khan et al | IJCSET | November 2013 | Vol 3, Issue 11, 431-433 www.ijcset.net | ISSN:2231-0711

433

