
Clattering Recall Using Self-Encryption Scheme in a
Distributed Data Storage System

Priyanka Chandragiri,

Dept of CSE
Christu Jyothi Institute of Technology & Sciences,

Warangal

A. Sowmya
Dept of IT

Christu Jyothi Institute of Technology & Sciences,
Warangal

Abstract-In this paper presents a novel data encryption and
storage scheme to address this challenge. Treating the data as a
binary bit stream, our self-encryption (SE) scheme generates a
key stream by randomly extracting bits from the stream. The
length of the key stream depends on the user's security
requirements. The bit stream is encrypted and the cipher text is
stored on the mobile device, whereas the key stream is stored
separately. This makes it computationally not feasible to recover
the original data stream from the cipher text alone. Our scheme
achieves the integration of storage correctness insurance and
data error localization, i.e., the identification of misbehaving
server(s). Unlike most prior works, the new scheme further
supports secure and efficient dynamic operations on data blocks,
including: data update, delete and append. Extensive security and
performance analysis shows that the proposed scheme is highly
efficient and resilient against Byzantine failure, malicious
data modification attack, and even server colluding attacks.
An algorithm is described which guarantees reliable storage of
data in a distributed system, even when different portions of the
data base, stored on separate machines, are updated as part of a
single transaction. The algorithm is implemented by a hierarchy
of rather simple abstractions, and it works properly regardless
of crashes of the client or servers. Some care is taken to state
precisely the assumptions about the physical components of the
system (storage, processors and communication).In which crash
recovery can be performed through self encryption scheme.

Keywords: Data security, stream cipher, wireless network

I. INTRODUCTION
We consider the problem of crash recovery in a data storage
system that is constructed from a number of independent
computers. The portion of the system that is running on
some individual computer may crash, and then be restarted
by some crash recovery procedure. This may result in the
loss of some information that was present just before the
crash. The loss of this information may, in turn, lead to an
inconsistent state for the information permanently stored in
the system. For example, a client program may use this data
storage system to store balances in an accounting system.
Suppose that there are two accounts, called A and B, which
contain $10 and $15 respectively. Further, suppose the client
wishes to move $5 from A to B.

The client might proceed as follows:
read account A (obtaining $10)
read account B (obtaining $15)

write $5 to account A
write $20 to account B

Now consider a possible effect of a crash of the system
program running on the machine to which these commands
are addressed. The crash could occur after one of the write
commands has been carried out, but before the other has been
initiated. Moreover, recovery from the crash could result in
never executing the other write command. In this case,
account A is left containing $5 and account B with $15, an
unintended result. The contents of the two accounts are
inconsistent. There are other ways in which this problem can
arise: accounts A and B are stored on two different machines
and one of these machines crashes; or, the client itself crashes
after issuing one write command and before issuing the other.
In this paper we present an algorithm for maintaining the
consistency of a file system in the presence of these possible
errors. We begin, in section 2, by describing the kind of
system to which the algorithm is intended to apply. In section
3 we introduce the concept of an atomic transaction. We argue
that if a system provides atomic transactions, and the client
program uses them correctly, then the stored data will remain
consistent. The remainder of the paper is devoted to
describing an algorithm for obtaining atomic transactions.
Any correctness argument for this (or any other) algorithm
necessarily depends on a formal model of the physical
components of the system. Such models are quite simple for
correctly functioning devices. Since we are interested in
recovering from malfunctions, however, our models must be
more complex. Section 4 gives models for storage, processors,
and communication, and discusses the meaning of a formal
model for a physical device. Starting from this base, we build
up the lattice of abstractions shown in figure 1. The second
level of this lattice constructs better behaved devices from the
physical ones, by eliminating storage failures and eliminating
communication entirely. The data storage system is
constructed from a number of computers; the basic service

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53

ISSN:2231-0711

Available online @ www.ijcset.net 48

provided by such a system is reading and writing of data bytes
stored in the system and identified by integer addresses. There
are a number of computers that contain client programs
(clients), and a number of computers that contain the system
(servers); for simplicity we assume that client and server
machines are disjoint. Each server has one or more attached
storage devices, such as magnetic disks. Some facility is
provided for transmitting messages from one machine to
another. A client will issue each read or write command as a
message sent directly to the server storing the addressed data,
so that transfers can proceed with as much concurrency as
possible. For instance, due to constraints imposed by limited
computing power, storage space, and battery lifetime, a light-
weight rather than computing intensive and complex
encryption algorithm is desired in Distributed data Storage
system. It is very challenging to protect the weakly encrypted
information, which might end up in the hands of an adversary,
who could then use powerful cryptanalysis tools to break the
encryption. Therefore, security solutions developed for
general distributed data storage systems cannot be adopted
directly for this new frontier. The most challenging part of
mobile device data protection lies in the conflicting
requirements for the data encryption scheme. While it should
be computationally infeasible for adversaries to decrypt the
data in captured mobile devices, the encryption/decryption
operation should be reasonably efficient for legitimate users.
Furthermore, the required computations should not consume
too much energy so as to minimize battery drain.
This research proposes a novel stream cipher scheme called
self-encryption (SE) to address this dilemma. Treating the data
set as a binary bit stream, we generate the key stream by
extracting n bits in a pseudorandom manner based on a user's
unique PIN and a nonce. The length of the key stream n is
flexible and depends on the security requirements. Then we
encrypt the remaining bit stream using this key stream. The
encrypted remainder is stored in the mobile device, whereas
the key stream is stored separately. It is very difficult to
recover the original data stream from the cipher text even if
an adversary has the knowledge of the encryption algorithm.
The variable length key stream makes brute force attacks
infeasible, and the decrypted data stream is still
unrecognizable unless the key stream bits are inserted to the
original position.

II. RELATED WORK
Securing sensitive and/or private data in mobile
communication has been an important topic in security
research community. Our research is relative to two main
areas: modern stream cipher design and distributed data
security.
A. Modern Stream Cipher Design
Stream ciphers are widely used to protect sensitive data at fast
speeds. Although block ciphers have been attracting more and
more attention, stream ciphers still are very important,
particularly for military applications and to the academic
research community. Stream ciphers are more suitable in
environments where tight resource constraints are applied, i.e.

in wireless mobile devices or wireless sensor networks. When
there is a need to encrypt large amount of streaming data, a
stream cipher is preferred. In recent years, a lot of efforts have
been reported in this area and many interesting new stream
ciphers have been proposed and analyzed. A popular trend in
stream cipher design is to turn to block-wise stream ciphers
like RC4, SNOW 2.0, and SCREAM. In order to improve the
time-data-memory tradeoff for stream cipher, a concept of
Hellman's time-memory tradeoff has been applied and it
achieved obvious improvements.
The Goldreich Levin one-way function hard-core bit
construction has been enhanced into a more efficient pseudo-
random number generator BMGL with a proof of security.
Efficient hardware implementations of stream ciphers are
important in both high-performance and low-power
applications. This is the main trend of the stream cipher
development in the future. Researchers have pointed out that
RF1D (Radio Frequency Identification) could be one of the
next killer applications for hardware-oriented stream ciphers.
The second phase of the eSTREAM project in particular
focused stream ciphers suited toward hardware
implementation and currently there are eight families of
hardware-oriented stream ciphers.
Normally there are two input parameters to a stream cipher,
the password and an initialization vector (IV). In contrast with
the user password being kept secret, the IV is public. As a
consequence, attacks against the IV setup of stream cipher
have been very successful. Due to the weakness with the IV
setup, more than 25% of the stream ciphers submitted to the
eSTREAM project in May 2005 have been broken. Some
seemingly robust academic designs were broken also due
to problems with the IV setup.
In this paper, we will investigate an alternative design
approach for the self-encryption stream cipher scheme to
avoid the shortcomings incurred by using public IV. Also, the
robustness of a fixed length key stream has been weakened as
the computing power which an adversary possesses has been
growing. Instead, a variant length key stream will make brute
force attacks computationally infeasible. To reach this goal,
this paper will also introduce a novel key stream generation
scheme.
B. Distributed Data Security
Effective data protection solution is one of the essential
security requirements that affect the acceptance of next
generation pervasive computing and the mobile device
utilization in enterprise networks. The rapid increase of
sensitive data and the growing number of government
regulations require long-term data retention to storage
security. During the data's life cycle, there are a lot of
potential attack points. In past decades, many researchers have
contributed in this area. Among the reported works, here we
skip the great achievements in network file system since they
are not very relative to the proposed project. Instead, we will
briefly introduce the recent progress in security services for
distributed data storage protection. Data should be protected
during the whole life cycle. Authentication and authorization
are the preliminary requirements in most data security

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53 ISSN:2231-0711

Available online @ www.ijcset.net 49

systems. In general, authentication can be implemented using
techniques such as passwords, digital signatures, or MAC
(Message Authentication Code). Authorization can be
performed by certificates, access control, etc. Considering the
risks of system crash or denial-of-service, availability is
required in most commercial systems. Typical solution is to
make duplicated backup. However, replication increases the
cost of consistency maintenance.
The essential task of data security is to prevent any
unauthorized third party from revealing or modifying the data.
Confidentiality can be achieved by using encryption, while
data integrity can be achieved by using digital signatures
and/or MAC. During transmit the data can be protected by
using protocols such as SSL and IPSec. Meanwhile, at the
storage the data confidentiality can be achieved using user
encryption schemes. Variant cipher schemes are proposed for
this purpose including the new designs we mentioned in
previous section, Estream project. To be robust against
cryptanalysis, the key sharing and key management are also
critical part in the context. Special care has to be taken while
storing, archiving, and deleting key materials. Another
important research area is the key recovery system, which
helps the users to decrypt the cipher text under certain
conditions.
Considering the constraints in mobile devices and the
asymmetric power available to the adversary, there is no
existing solution can be adopted directly to address the data
security question in mobile devices. The proposed project is to
investigate more robust stream cipher scheme by exploring
more flexible key stream generation methods and more secure
key stream management approach. The detailed discussion of
our proposed research works is presented in the next section.

III. SELF-ENCRYPTION SCHEME
This section consists of two parts. First of all, we will
introduce a framework under which the sensitive and/or
private data are separated and stored in a distributed manner.
Secondly, we will specify the detailed design of our SE
scheme.
A. Framework of SE Scheme
Considering the fact that generally mobile devices do not
possess as many resources as normal computers, it is very
challenging to prevent an adversary from breaking the
embedded cryptographic algorithm when the mobile devices
are captured. It is also not desirable to implement a complex
computing intensive encryption/decryption scheme in a
Distributed system. Therefore, the rationale of this project is
to investigate a novel light-weight approach to protect the
information effectively even if an adversary has good
knowledge of the encryption algorithm and many more
resources to break the cryptography.
To reach this goal, our essential idea is that an adversary can
only obtain part of the data from the distributed system alone,
which is not enough to reveal any useful information. As
illustrated by a scenario shown in Figure 1, the sensitive data
is broken into two parts using our self-encryption stream
cipher scheme. The major part (Part A: cipher text) is stored in

the mobile device carried by the company employee, and the
minor part (Part B: key stream + other parameters) is
protected in the secure server of the company. Part A is
encrypted using part B. When the user needs to access the
data, he or she has to input a correct PIN to pass the
authentication procedure. Then the server will send part B to
decrypt part A and merge them together to recover the original
plaintext. When a data is lost, at most the adversary can access
the part A, from which it is computationally infeasible to get
meaningful information.

Fig.1 Overview of the Self Encryption Framework

B. Self-Encryption Scheme
Similar as general stream cipher, the proposed SE stream
cipher also encrypts the plaintext and decrypts the cipher text
by adding bitwise a key stream:
Cipher text = Plaintext © Key stream (1)
The key stream generator consists of two parts, a hash
function H and a random number generator G. The hash
function takes the user's PIN and a nonce as input and the
output is an integer seed, which is used as the seed of the
random number generator G. The output random number
sequence {ro, n, ..., rn-i} indicates which bits are selected and
abstracted from the message (plaintext) to form the key
stream. Therefore, we have:

seed = H(PIN, nonce) (2)
{ro, n, ..., rn-i} = G(seed) (3)
where {ro, n, ... rn-i} is a random number sequence generated
by the random number generator G. Since the random
numbers could beyond the length of the message, and the
length of the message body decreases as bits are
abstracted, the pointers to the key stream bits need to be
normalized following the changing message size. Hence,
among the n abstracted bits {r'o, r'i, ... r'n-i}, the position of
the /c-th bit is:

r'k= a mod (m-/() (4)
The length of the random number sequence 77, which is also
the length of key stream, is determined by the size (number of
bits) of the message m and the security requirement. A longer
the key stream provides more robust cipher to protect a larger
size message. To support this flexibility, we define parameter
security level sl as the security level and A as the minimum

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53 ISSN:2231-0711

Available online @ www.ijcset.net 50

length unit difference between two consecutive security
levels. A is a percentage instead of a fixed bit number. This
design leads to a unique length of each key stream depending
on the concrete message size. It makes the brute force attacks
much difficult as the working load for key stream guess is
increased exponentially. The key stream length n is calculated
as:
n=m* Si *A if Si is not zero (5)

To illustrate the use of equation (5), assume A = 5%, for
example, then the length of the keystream can be 5% of the
original message size when sl = 1, 10% when sl = 2, 75%
when sl = 3, and so on. When sl = 0, a default fixed key
stream length is adopted, where n = 256 bits. Actually, further
experimental and theoretical analysis will be conducted to set
the optimal value of A. The use of security level sl should be
specified in more detail in the design of the SE protocol in the
future.
Figure 2 presents the working flow of the proposed SE stream
cipher. When the user has finished editing or reading the
document, the following works are performed. The seed of the
random number generator is calculated by the hash function
taking the user's PIN and a nonce as the input. Then,
according to the size of the sensitive document and the
security level, a sequence of random numbers is generated
with length n. By treating the file as a binary stream, this
random number sequence indicates which bits in the data file
are abstracted to form the key stream.

Fig.2 SE Scheme Working Flow Illustration.

Then the cipher text is calculated as normal stream cipher
does. The cipher text is stored in the mobile device, the key
stream, user's PIN, and the nonce are stored the secure server
in the company. We will investigate the tradeoff between the
performance and security regarding the information to be
transferred back to the server. For instance, maybe it is more
secure not to transfer the user's PIN and nonce, instead,
backing up the sequence {r'o, r'l, ...r'n-i} is better.
Comparing to existing stream cipher schemes,
computationally the proposed SE scheme is much more
robust. The length of the keystream is not fixed except when
the default value (256) is adopted, if the user selected security

level sl = 0. This raises the bar of brute force attackers, the
complexity is increased to O(2m).
Furthermore, to recover the original data stream, the adversary
needs to insert every bit of the key stream back correctly. The
permutation in this operation is:
Pm = m x(m-1) x(m-2) x ..x(m-n+1) (6)
The complexity of this part is O(mn). Then the total
complexity is O(2m/r?n), which is much robust than the
reported modern stream cipher schemes.

IV. SE PROTOCOL DESIGN
To secure the sensitive data in mobile devices, a protocol set is
mandatory to support the functionalities of the SE stream
cipher, the AD agent, and the server. In addition, the protocol
specifies the behavior of the whole system. At the distributed
data storage side, the major functions include:
Setting up connection with the remote server;
2) Retrieving the key stream and nonce for local decryption;
3) Generating a new key stream with a new nonce and
encrypting the document; and
4) Transferring the updated key stream and new nonce back
to server.
At the server side, the SE protocol supports two working
model: normal model and emergent model. As implied by its
name, the normal model (NM) consists of the working flow
when the data storage system is used normally by the
legitimate user. The emergent model (EM) is a status that is
triggered when a mobile device is reported lost. In fact, EM
specifies the countermeasures to be executed when the device
is in the hand of an adversary. Figure 3 illustrates flow charts
of both sides in our proposed SE protocol.

Figure 3. SE Protocol Working Flow Chart.

When a data storage system is turned on and trying to setup
connection with the server through the network, the first
action the server takes is to check whether this mobile device
is reported lost. For this purpose, the server maintains a list of
reported lost devices. When the mobile device is not in the
lost list, the server continues working in the normal model.

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53 ISSN:2231-0711

Available online @ www.ijcset.net 51

As presented along the path in the middle of Figure 3, the
server checks the user's PIN, provides the key stream and
nonce to mobile device allowing legitimate user edit/read
the document. When a user finishes her work, a new key
stream and nonce are sent back and stored in the server.
During this procedure, if the input PIN error happens three
times, the server will suspend the account but won't enter the
emergent model. In contrast, if the device matches a record in
the lost list, the server enters the emergent model. It will ignore
the received PIN and automatically reject the requirement of
key stream materials. The further activities depend on the
user's security setting, If the user has explicitly required, the
server will destruct the decryption materials permanently.

V. CONCLUSIONS AND DISCUSSIONS
Lack of effective protection of sensitive data in mobile
devices is a major concern that prevents the mobile devices
from being used widely as part of enterprise networks or
personal area networks. The proposed SE system will
remove the barrier and enable employees to enjoy the high
efficiency and convenience brought by mobile devices. It will
lead to another wave of prosperity of wireless networks and
pervasive computing. Physical attacks have been proved
effective in breaking some well designed ciphers in practice
[13]. Unfortunately, it is challenging to designers to
theoretically investigate the robustness of a cipher scheme
against various physical attacks. To address this problem, a
prototype is going to be implemented on top of reconfigurable
hardware devices (i.e. FPGAs). Particularly we will study the
behavior of our SE prototype under local non-invasive attacks
including timing analysis and differential power analysis
(DPA) [20].

Figure 4. Prototype Implementation & Experiment

Platform Construction.

Figure 4 presents the prototype implementation and physical
attack study system architecture. At the server side, we
plan to implement the SE protocol on a NetFPGA board
inserted in a Dell 2950 server. As the mobile device side, we
are considering to implement the SE stream cipher scheme
and SE protocol on another NetFPGA board inserted in a PC,
which is connected to the network through wireless
connection.

Devices such as oscillo graph will be used to monitor and
record the electromagnetic leakage when the SE stream cipher
is being executed to encrypt/decrypt the data. As shown in
middle of Fig. 4, an adversary may perform DPA attacks by
analyzing the variance of leaking electromagnetic wave.
Actually, we expect that our SE stream is not vulnerable to
DPA attacks due to the uniqueness of each key stream and a
much larger key stream space. However, we are also
prepared to improve the implementation if vulnerabilities
are observed on the prototype.
Aside from investigating the potential security
vulnerability, we will study the performance issues using the
prototype in the context of real applications. Considering the
resource constraints in the typical mobile devices, the
proposed SE stream cipher is hardware-oriented and aims
at light-weighted design. We will explore the tradeoffs
between the performance and resource utility by the SE
system. We have defined a facility (transactions) which
clients can use to perform complex updates to distributed
data in a manner that maintains consistency in the
presence of system crashes and concurrency. Our algorithm
for implementing transactions requires only a small amount
of communication among servers. This communication is
proportional to the number of servers involved in a
transaction, rather than the size of the update. We have
described the algorithm through a series of abstractions,
together with informal correctness arguments.

VI. REFERENCES

[1] J. Al-Muhtadi, D. Mickunas, and R. Campbell, "A Lightweight
Reconfigurable Security Mechanism for 3G/4G Mobile Devices," IEEE
Wireless Communications, April 2002.

[2] D. J. Bernstein, "Which eSTREAM ciphers have been broken?"
http://www.ecrypt.eu.org/ stream/, submitted 2008-02-21.

[3] A. Biryukov, "Block Ciphers and Stream Ciphers: The State of the Art,"
Lecture Notes in Computer Science, in Proceedings of the COSIC
Summer course, 2003.

[4] A. Biryukov and A. Shamir, "Cryptanalytic time/memory/data
tradeoffs for stream ciphers," in Proceedings of Asiacrypt'OO, no.
1976 in Lecture Notes in Computer Science, pp. 1-13, Springer-Verlag,
2000.

[5] W. Daniel, T. Pintaric, F. Ledermann, S. Dieter, "Towards Massively
Multi-User Augmented Reality on Handheld Devices", International
Conference on Pervasive Computing, Munich, Germany, 2005.

[6] D, E. Denning and D. K. Branstad, "A Taxonomy for Key Escrow
Systems," Communications of the ACM, Vol. 39, Issue 3, 1996.

[7] eSTREAM, ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream.
Notes in Computer Science, pp. 239-255, edited by W. Fumy, Springer-
Verlag, 1997.

[8] T. Good and M. Benaissa, "Hardware performance of eStream phase-Ill
stream cipher candidates," the State of the Art of Stream Ciphers
Workshop- (SASC'08), Lausanne, Switzerland, Feb. 13-14, 2008.

[9] K. Greene, "Securing Cell Phones," Technology Review, MIT,
Wednesday, Aug. 01, 2007.

[10] J. Hastad and M. Naslund, "Improved analysis of the BMGL keystream
generator," in Proceedings of the Second NESSIE Workshop, 2001.

[11] Eswaren, K. P. et al. The notions of consistency and predicate locks in a
database system. Comm. ACM 19, 11. 624-633, (Nov 1976).

[12] Gifford, D.K. Violet: An experimental decentralized system. Submitted to 7th
Symposium on Operating System Principles, 1979.

[13] Gray, J.N. Notes on data base operating systems. In Operating Systems, An
Advanced Course, American Elsevier, 1978.

[14] N. Fournel, M. Minier, and S. Ubeda, "Survey and Benchmark of Stream
Ciphers for Wireless Sensor Networks," the Workshop in Information

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53 ISSN:2231-0711

Available online @ www.ijcset.net 52

Security Theory and Practices (WISTP'07), Crete, Greece, May 8-11,
2007.

[15] A. O. Freier, P. Karlton, and P. C. Kocher, "The SSL Protocol, Version
3.0," Internet draft. Networking Group, March 1996.

.

AUTHORS

Priyanka Chandragiri had received Master of Technology(software
engineering) from Vageedevi Engineering College, affiliated to
JNTU, Bollikunta, Warangal. Currently working at Christu Jyothi
Institute of Technology & sciences, Jangaon, Warangal,A.P, as an
Assistant Professor in department of CSE. Her Research area
includes wireless and Sensor Networks..

A.Soumya working as an Sr. Assistant Professor in department of
IT, Christu Jyothi Institute of Technology &sciences, Jangaon,
Warangal, A.P, received Master of technology(software
Engineering)from Jayamukhi Institute of Technological Sciences,
affiliated to JNTU, Narsampet. Her Research area includes wireless
and Sensor Networks

Priyanka Chandragiri et al | IJCSET |February 2013 | Vol 3, Issue 2, 48-53 ISSN:2231-0711

Available online @ www.ijcset.net 53

