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Abstract—Image inpainting is the filling in of missing or 
damaged regions of images using information from 
surrounding areas. The use of a model for inpainting 
based on the Cahn-Hilliard equation, which allows for 
fast, efficient inpainting of degraded text, as well as 
super-resolution of high contrast images is introduced. 
Image decomposition is an important problem in image 
processing. The use of a model for inpainting based on the 
Cahn-Hilliard equation, which allows for fast, efficient 
inpainting of degraded text, as well as super-resolution of high 
contrast images is introduced. Cahn-Hilliard equation gives a 
better result on gray scale images. The Cahn-Hilliard 
equation is a nonlinear fourth order diffusion equation 
originating in material science for modeling phase separation 
and phase coarsening in binary alloys. The inpainting of 
binary images using the Cahn-Hilliard equation is a new 
approach in image processing. Processing is done by using 
subgradients of the total variation functional within the flow, 
which leads to structure inpainting with smooth curvature of 
level  

 
Index Terms—Classification; descriptors; Foreground 

support; Histogram of oriented gradients; low rank modeling;  
Moving object detection; 

I. INTRODUCTION 

Image decomposition is an important problem in image 
processing. It plays a significant role in realm of object 
recognition, biomedical engineering, astronomical imaging, 
etc. The target image is required to be decomposed into two 
meaningful components. One is the geometrical part or 
sketchy approximation of an image which is called cartoon 
component, and the other is the oscillating part or small 
scale special patterns of an image which is called texture 
component.  
Mathematically, the cartoon component can be described 
by a piecewise smooth (or a piecewise constant) function 
whilst the texture component is commonly oscillating. 
Because of their different properties, it is more efficient and 
effective to separate them for image processing and image 
analysis. The main task herein is to extract the cartoon and 
texture components from a given image with degradation, 
e.g., blurry and/or missing pixels. For a target image f ∈ R, 
the image decomposition is to derive f = u+v, where u and v 
represent the cartoon and texture, respectively. A two-
dimensional or higher dimensional image can be 
vectorizied as a one-dimensional vector e.g., in 
lexicographic order. 

A decomposition model to restore blurred images with 
missing pixels is developed. And here the assumption is 
that the underlying image is the superposition of cartoon 
and texture components. The total variation norm and its 
dual norm is used to regularize the cartoon and texture, 
respectively. Numerical algorithm based on the splitting 
versions of augmented Lagrangian method is used to solve 
the problem. The existence of a minimizer to the energy 
function and the convergence of the algorithm are 
guaranteed. In contrast to recently developed methods for 
deblurring images, 
the proposed algorithm not only gives the restored image, 
but also gives a decomposition of cartoon and texture parts. 
These two parts can be further used in segmentation and 
inpainting problems. 
 
Image inpainting is the filling in of damaged or missing 
regions of an image with the use of information from 
surrounding areas. In its essence, it is a type of 
interpolation. Its applications include restoration of old 
paintings by museum artists, and removing scratches from 
photographs. For instance, in the museum world, in the 
case of a valuable painting, this task would be carried out 
by a skilled art conservator or art restorer. In the digital 
world refers to the application of 
sophisticated algorithms to replace lost or corrupted parts 
of the image data (mainly small regions or to remove 
small defects). In photography and cinema, is used for film 
restoration; to reverse the deterioration (e.g., cracks in 
photographs or scratches and dust spots in film; 
see infrared cleaning). It is also used for removing red-eye, 
the stamped date from photographs and removing objects to 
creative effect. 
This technique can be used to replace the lost blocks in the 
coding and transmission of images, for example, in 
a streaming video. It can also be used to remove logos in 
videos. Inpainting is rooted in the restoration of images. 
Traditionally, inpainting has been done by professional 
restorers. The underlying methodology of their work is as 
follows: 
The global picture determines how to fill in the gap. The 
purpose of inpainting is to restore the unity of the work. 
The structure of the gap surroundings is supposed to be 
continued into the gap. Contour lines that arrive at the gap 
boundary are prolonged into the gap. The different regions 
inside a gap, as defined by the contour lines, are filled with 
colors matching for those of its boundary. 
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CAHN-HILLIARD equation is used for inpainting the 
image. The  Cahn–Hilliard equation (after  John. W.Cahn 
 and  John E. Hilliard)is an equation of mathematical 
physics which describes the process of phase separation, by 
which the two components of a binary fluid spontaneously 
separate and form domains pure in each component 
 
The rest of this paper is organized as follows. Section II 
describes the previous works.  Section III describes the 
proposed methodology in detail. Finally, conclusion is 
given in Section VI. 

II. LITERATURE SURVEY  

The following section describes some of the previous 
works on image inpainting. 

(L. Rudin, S. Osher, and E. Fatemi 1992) proposed first 
model for image decomposition. The presence of noise in 
images is unavoidable. It may be introduced by the image 
formation process, image recording, image transmission, 
etc. These random distortions make it difficult to perform 
any required picture processing. The feature oriented 
enhancement introduced is very effective in restoring 
blurry images, but it can be "frozen" by an oscillatory noise 
component. Even a small amount of noise is harmful when 
high accuracy is required, e.g. as in subcell (subpixel) 
image analysis. In practice, to estimate a true signal in 
noise, the most frequently used methods are based on the 
least squares criteria. The rationale comes from the 
statistical argument that the least squares estimation is the 
best over an entire ensemble of all possible pictures. 

(Daubechies and G. Teschke 2002) proposed a wavelet-
based treatment of variational problems arising in the field 
of image processing. A special class of variational 
functionals that induce a decomposition of images into 
oscillating and cartoon components and possibly an 
appropriate ‘noise’ component. the cartoon component of 
an image is modeled by a BV function; the corresponding 
incorporation of BV penalty terms in the variational 
functional leads to PDE schemes that are numerically 
intensive. By replacing the BV penalty term by a L1 term 
(which amounts to a slightly stronger constraint on the 
minimizer), and writing the problem in a wavelet 
framework, we obtain elegant and numerically efficient 
schemes with results very similar to those obtained in 
Modeling textures with total variation minimization and 
oscillating patterns in image processing. It mainly focuses 
on a special class of variational problems which induce 
decomposition of images in oscillating and cartoon 
components; the cartoon part is ideally piecewise smooth 
with possible abrupt edges and contours; the oscillation 
part, on the other hand, ‘fills’ in the smooth regions in the 
cartoon with texture-like features. Several authors, propose 
to model the cartoon component by the space BV which 
induces a penalty term that allows edges and contours in 
the reconstructed cartoon images. However, the 
minimization of variational problems of this type usually 
results in PDE-based schemes that are numerically 
intensive.  

(L. Vese and S. Osher 2003) proposed a system that 
Performs modeling of real textured images by functional 
minimization and PDE. Combines ROF method with 
texture preserving model. To model texture component 
space of oscillating functions are used, finite differential 
method is used here to obtain the decomposition U+V.  

(F. Aujol, G. Gilboa, T. Chan, and S. Osher,2006) This 
paper explores various aspects of the image decomposition 
problem using modern variational techniques. We aim at 
splitting an original image f into two components u and v, 
where u holds the geometrical information and v holds the 
textural information. The focus of this paper is to study  
energy terms and functional spaces that suit various types 
of textures. Our modeling uses the total-variation energy 
for extracting the structural part and one of four of the 
following norms for the textural part: L2, G, L1 and a new 
tunable norm, suggested here for the first time, based on 
Gabor functions. Apart from the broad perspective and our 
suggestions when each model should be used, the paper 
contains three specific novelties: first we show that the 
correlation graph between u and v may serve as an efficient 
tool to select the splitting parameter, second we propose a 
new fast algorithm to solve the TV -L1 minimization 
problem, and third we introduce the theory and design tools 
for the TV -Gabor model     

(J.-F. Cai, R. H. Chan, and Z. Shen,2010) introduced the 
problem of inpainting, process is to fill-in the missing part 
in images. It is an interesting and important inverse 
problem. It arises, for example, in removing scratches in 
photos, in restoring ancient drawings, and in filling in the 
missing pixels of images transmitted through a noisy 
channel. We need to extract information such as edges and 
textures from the observed data to fill in the missing part 
such that shapes and patterns are consistent in the human 
vision. One popular approach for image inpainting is the 
PDE-based method. The idea is to propagate the geometric 
information of the curves along the edges by specially 
designed differential operators. Since the PDE-based 
approaches are able to keep the edges, it performs very well 
for piecewise smooth images. Mainly focusing on  
minimization problems in image inpainting that 
simultaneously restore the cartoon and texture parts of the 
image. By using proximal forward-backward splitting, we 
have proposed algorithms that solve the minimization 
problems, and established their convergence. Numerical 
examples are given to illustrate the applicability and 
usefulness of the algorithms. 

(P. Maure, J. F. Aujol, and G. Peyré,2011) proposed a new 
adaptive framework for locally parallel texture modeling. 
Uses Alternating direction method Two common 
alternating direction methods Alternating Direction Method 
of Multipliers (ADMM) and Alternating Minimization 
Algorithm (AMA).Method used for solving PDE. Provides 
faster convergence than existing methods. 

(B. S. He, M. Tao, and X. M. Yuan,2012) the linearly 
constrained separable convex programming whose 
objective function is separable into m individual convex 
functions with non-overlapping variables. The alternating 
direction method (ADM) has been well studied in the 
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literature for the special case m = 2. But the convergence of 
extending ADM to the general case m> 3 is still open. In 
this paper, we show that the straightforward extension of 
ADM is valid for the general case m>3 if a Gaussian back 
substitution procedure is combined. The resulting ADM 
with Gaussian back substitution  

is a novel approach towards the extension of ADM from m 
= 2 to m >3, and its algorithmic framework is new in the 
literature. For the ADM with Gaussian back substitution, 
we prove its convergence via the analytic framework of 
contractive type methods and we show its numerical 
efficiency by some application problems 

 

III PROPOSED METHODOLOGY 

Let Target image be ‘ F ’Image decomposition is to derive 
,U + V. Cartoon and Texture components are ‘ U ‘ and ‘ 
V‘. 

Mathematically, the cartoon component can be described 
by a piecewise smooth (or a piecewise constant) function 
whilst the texture component is commonly oscillating. 
Because of their different properties, it is more efficient and 
effective to separate them for image processing and image 
analysis. The main task herein is to extract the cartoon and 
texture components from a given image with degradation, 
e.g., blurry and/or missing pixels. 

A digital images may be sometimes distorted and degraded 
during image formation or transmission which could lead to 
a noticeable loss of visual image quality e.g. image blurring 
by out-of-focusing or camera shake during image 
acquisition; image/film deterioration due to  dust spots or 
cracks in film; low resolution of images due to physical 
limit of digital camera; or noisy images caused by noisy 
sensors and/or transmission errors. For simplicity, if we 
denote images as vectors in Rn by concatenating their 
columns, the observed degraded version of the latent image 
u usually can be modeled as follows, 

                                                f = Hu + € 

where f is the observed degraded image, u is the latent 
image,  € is the image noise and H is the matrix denoting 
the degrading operator. The image restoration task is then 
to reverse the effect of the operator H on f to recover the 
latent image u. It is well known that image restoration is an 
ill-conditioned inverse problem sensitive to image noise.    

In particular, these models often include a fidelity term that 
keeps the solutions close to the given image. By restricting 
the effects of the fidelity term to the complement of the 
inpainting region, Chan and Shen showed that very good 
image completions can be obtained. The principle behind 
their approach can be summarized as follows: variational 
denoising and segmentation models all have an underlying 
notion of what constitutes an image. In the inpainting 
region, the models of Chan and Shen reconstruct the 
missing image features by relying on this built-in notion of 
what constitutes a natural image. 

 The fidelity parameter λ in  enforces the original image 
outside of the inpainting region. One might expect that as  λ  
gets large, the existing region enforces some kind of 
effective boundary conditions on the inpainting region, 

these solutions turn out to approximate a solution. Results 
establish rigorously a connection between the inpainting 
technique used by Bertalmio et. al. (who prefer to impose 
boundary conditions at the edge of the inpainting domain 
D) and that of Chan et. al. (who prefer to use a fidelityterm, 
similar to the second term in the right hand side of our 
model) 

A slightly modified Cahn-Hilliard equation allows us to 
obtain inpaintings as good as the others, but achieves them 
much more rapidly. This faster method is a result of both a 
new simplified PDE model and the use of fast solvers for 
such a model. 

Another important feature of this new idea is that fast 
solvers exist for the numerical integration of the Cahn-
Hilliard equation and similar diffuse interface equations. To 
date no such solvers have been applied to these problems in 
the context of imaging application that this synergistic 
combination of a simpler PDE based method and a state-of-
the-art fast solver provides significant improvement over 
the previous state-of-the-art. 

IMPLEMENTATION DETAILS 

Cahn-Hilliard inpainting approach has many of the 
desirable properties of curvature based inpainting models 
such as the smooth continuation of level lines into the 
missing domain. 

It provides us with a relatively simple fourth order PDE for 
the inpainting of binary images, rather than a more complex 
gradient flow to minimize a curvature functional. 

Its numerical solution is an order of magnitude or more 
faster than other competing PDE-based inpainting methods. 

The stationary solution of the limiting case Lamba tends to 
0 solves. 

H−1: We denote by H−1( ) the dual space of H1 (Ω) with 
corresponding 

norm ||.||-1 . For a function f ∈ H−1( ) the norm is defined 
as  

  
By using subgradients of the TV functional within the flow, 
which leads to structure inpainting with smooth curvature 
of level sets. We motivate this new approach by a 
Ί−convergence result for the Cahn-Hilliard energy. 

 In fact we prove that the sequence of functionals for an 
appropriate time-discrete Cahn-Hilliard inpainting 
approach Ί -converges to a functional regularized with the 
total variation for binary arguments u = XE, where E is 
some Borel measurable subset of Ω. 

This Ί −limit is generalized to an inpainting approach for 
grayvalue images, called TV −H−1 inpainting. There is a 
smooth transition layer between 0 and 1 in the Cahn-
Hilliard inpainting approach (depending on the size of _) to 
a sharp interface limit in which the image function now 
jumps from 0 to 1. 

Let f(~x), where ~x = (x; y), be a given image in a domain , 
and suppose that D _  is the inpainting domain. Let u(~x; t) 
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evolve in time to become a fully inpainted version of f(~x) 
under the following equation: 

 
The function W(u) is a nonlinear potential with wells 
corresponding to values of u that are taken on by most of 
the grayscale values. Binary images in which most of the 
pixels are either exactly black or white. In this binary case, 
W should have wells at the values   

 u = 0 and u = 1. W(u) = u2(u -1)2, however other functions 
could be used the image function u(~x; t) takes on 
grayscale values in a domain . and satisfies periodic 
boundary conditions on ∂ῼ. 

Alternatively, Neumann boundary conditions could be 
used, or any boundary conditions for which one can use 
fast solvers for the equation. Equation (1) is what we will 
call the modified Cahn-Hilliard equation, due to the added 
fidelity term (~x)(f - u). 

The role of epsilon in equation (1) is important. In the 
original Cahn- Hilliard equation, serves as a measure of the 
transition region between two metals in an alloy, after 
heating and reaching a steady state. Applied to image 
processing, " is a measure of the transition region between 
the two grayscale states . for example between the black 
and white of printed text. 

  A specific fast solver known as convexity splitting is 
introduced. The other fast solvers might be used with good 
performance. Convexity splitting involves dividing up the 
energy functional for the equation into two parts a convex 
energy plus a concave energy. The part of the Euler-
Lagrange equation derived from convex portion is then 
treated implicitly in the numerical scheme, while the 
portion derived from the concave part is treated explicitly. 

Under the right conditions, convexity splitting for gradient 
flow derived equations can allow for an unconditionally 
gradient stable time-discretization scheme, which means 
arbitrarily large time steps can be taken. Vollmayr-Lee and 
Rutenberg have more recently refined the conditions under 
which stability is applicable. 

The new modified Cahn-Hilliard equation is not strictly a 
gradient flow. The original Cahn-Hilliard equation is 
indeed a gradient flow using an H1 norm for the energy. 

 
while the fidelity term in equation  can be derived from a 
gradient flow under an L2 norm for the energy.  

 

    
Where 

 
And 

 
A possible splitting of E2 is 

 
Where 

 
And 

 
The modified Cahn-Hilliard equation is neither a gradient 
flow in H1 nor L2. However, the idea of convexity 
splitting, one for the Cahn-Hilliard energy and one for the 
energy E2 , can still be applied to this problem with good 
results. The constants C1 and C2 are positive, and need to 
be chosen large enough so that the energies E11, E12, E21, 
and E22 are convex. C1 should be comparable to 1, while 
C2 should be comparable to 0. Numerical tests have shown 
that with these choices the scheme becomes 
unconditionally stable. 

Finally the one can perform inpainting across larger regions 
by considering a two-step method. The inpainting is done 
first with a larger Epsilon, which results in topological 
reconnection of shapes with edges smeared by diffusion. 
The second step then uses the results of the first step and 
continues with a much smaller value of  epsilon in order to 
sharpen the edge after reconnection. In practice such a two-
stage process can result in inpainting of a stripe across a 
region that is over ten times the width of the stripe, without 
any a priori knowledge of the location of the stripe. 

 

Expiremental Results 

The modified Cahn-Hilliard equation lends itself 
particularly well to the inpainting of simple binary shapes, 
such as stripes and circles. Moreover, its applicability can 
be extended to achieve inpainting of objects composed of 
stripes and circles, i.e., roads or text. 

INPUT :  Blurry images, images with missing pixels, 
images with blurry and missing pixels. 

OUTPUT : After continues iteration image undergoes 
inpainting and generates the original image. 
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IV.CONCLUSION 

A coupled model for decomposing the cartoon and texture 
components of an image with blurry and/or missing pixels 
is introduced. Most of the existing papers have various 
limitations. Here an efficient numerical algorithm with 
guaranteed convergence is applied to solve the proposed 
model. The total variation norm and its dual norm is used to 
regularize the cartoon and texture. An efficient numerical 
algorithm based on the splitting versions of augmented 
Lagrangian method to solve the problem. The existence of 
a minimizer to the energy function and the convergence of 
the algorithm are guaranteed. The proposed model may not 
be effective when a large region of pixels are missed. For 
this case, an alternative strategy is to add a curvature term 
to the total variation term or use some nonconvex models 
as futher modification 
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