
SQL Performance Tuning
Ch.V.N.Sanyasi Rao#1, Tiruveedula Gopi Krishna*2

Associate Project Manager, HCL, Bangalore, India
1 vnsanyasirao77@gmail.com

*Sirt University
2Lecturer, Department of Computer Science, Hoon, Libya

2gktiruveedula@gmail.com

Abstract— Database performance is one of the most
challenging aspects of an organization’s database operations.
Database tuning can be an incredibly difficult task,
particularly when working with large-scale data where even
the most minor change can have a dramatic positive or
negative impact on performance. A well-designed application
may still experience performance problems if the SQL it uses
is poorly constructed. It is much harder to write efficient SQL
than it is to write functionally correct SQL. As such, SQL
tuning can help significantly improve a system’s health and
performance. The key to tuning SQL is to minimize the search
path that the database uses to find the data.

Keywords— SQL tips, optimizer modes, SQL tuning, index
hint.

I. INTRODUCTION

When an application submits a SQL query to the
database server, the server first parses the SQL. It checks
the SQL syntax, for security access and prepares the query
for execution. Query optimization involves determining the
optimal path for executing the query. Each database comes
with built-in intelligent algorithms to figure out the best
possible way to execute the query. For complex queries
involving joins between eight different tables, the optimizer
could spend as much as 30 minutes to find an effective
execution path before the server actually executes the query.
The server uses either a cost-based optimizer or a rule-
based optimizer to figure out the best execution path for the
query.

II. TIPS TO IMPROVE PERFORMANCE

Hints are instructions that you include in your SQL
statement for the optimizer. Using hints, you can specify
join orders, types of access path, indexes to be used, and
the intended optimization goals. You must place the hints
within /*+ <hint> */, and you should place them after the
SELECT key word. [1], [2].

Note: If a user doesn't follow the syntax, the optimizer
will not prompt the user with a syntax error. Instead, it will
treat it as no hint.

A. Optimizer Modes

The optimizer goal determines the overall approach the
optimizer takes in determining an execution plan. The
following statement returns the rows as soon as it finds a
few:

SELECT /*+ FIRST_ROWS */ distinct customer_name
FROM customer;

However, the following query waits until all the rows are
retrieved and sorted before returning them to the client:

SELECT /*+ ALL_ROWS */ distinct customer_name
FROM

 customer ORDER BY customer_name;

You can set the optimizer modes at the session level or
at the query level. PL/SQL procedures that run multiple
queries would need the session-level setting.

B. Index Hint

Indexes play a very important role in SQL tuning.
Indexes allow the table data to be indexed and organized,
which in turn enables faster retrieval. Merely creating an
index does not speed up the query execution. You must
make sure that the query's execution plan uses the hinted
index. In the following query, when the optimizer uses the
index hint, it will be forced to use the specified index for
the search on last_name:

SELECT /*+ index(cust_table_last_name_indx) */
 distinct author_names FROM devx_author_names

WHERE
 author_last_name ='DON%';
When you do a explain plan on this query, you will see

the optimizer using this index. You can also instruct the
optimizer to choose between a subset of indexes using /*+
index(indx1, indx2) */.

Note: Creating the index does not speed up the query
execution. The index needs to be analyzed. The syntax for
analyzing the index is:

analyze index <index_name> compute statistics;

C. Join Queries

If the query involves joining two or more tables, the
database server provides various hints to speed up the
queries. A typical join query involves performing a search
of the inner table for each row found in the outer table.

For example, suppose table A has 100 rows and table B
has 1,000 rows. Logically, the query would run faster if for
each row from table B it did a lookup for a matching row in
table A. The opposite join could take as much as 10 times
longer to execute.

V.N.Sanyasi Rao et al | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,344-346

www.ijcset.net 344

D. ORDERED Hint

The ordered hint instructs the optimizer to join the tables
in the order in which they appear in the FROM clause.
Even though the optimizer picks a different join order
based on the computed statistics, this hint forces the
optimizer to overwrite its choice of join order. The syntax
is /*+ ORDERED */.

E. USE_NL Hint

Use nested loop joins when the subset of data between
the two joining tables is small. Because nested loop joins
fetch the data as soon as possible, they are the preferred
joins when either the data doesn't need to be sorted or you
need the queries to return quickly.

For the previous tables A and B example, the inner table
(second table) would be table A:

SELECT /*+ ORDERED USE_NL(A) */
FROM B, A
Where A.column1 = B.column2;

F. USE_HASH Hint

This hint is best suited for joining tables that have a large
subset of data. A hash join offers better throughput and is
best suited for sorting and ordering queries. When the size
of the tables is large, the hash table size becomes pretty
large and it requires more CPU and memory.

The syntax for the hint is
/*+ USE_HASH (table_name) */.

G. USE_MERGE Hint

The merge hint requires that both inputs be sorted on the
merge columns, which are defined by the equality
(WHERE) clauses of the join predicate. Because each input
is sorted, the merge join operator gets a row from each
input and compares them. For example, for inner join
operations, the rows are returned if they are equal. If they
are not equal, whichever row has the lower value is
discarded and another row is obtained from that input. This
process repeats until all rows have been processed. The
syntax for this hint is

/*+USE_MERGE(table_name) */.

III. USE THE SQL TUNING THAT FITS

Before you start tuning the query, understand the tables
and their data and apply the hints. The hints you use in the
query must be tailored to each query's requirement. No one
solution fits all in SQL tuning. The best bet would be to try
different hints and time the queries. Select the best hint and
do a cost analysis on the hint to make sure that you don't
overuse the server resources [3].

Below are some Tips to Improve performance.
1) Understand the data. Look around table structures

and data. Get a feel for the data model and how to
navigate it.

2) If a view joins 3 extra tables to retrieve data that
you do not need, don't use the view!

3) When joining 2 views that themselves select from
other views, check that the 2 views that you are
using do not join the same tables!

4) Avoid multiple layers of view. For example, look
for queries based on views that are themselves
views. It may be desirable to encapsulate from a
development point of view. But from a
performance point of view, you loose control and
understanding of exactly how much task loading
your query will generate for the system.

5) Look for tables/views that add no value to the
query. Try to remove table joins by getting the
data from another table in the join.

6) WHERE EXISTS sub-queries can be better than
join if can you reduce drastically the number of
records in driver query. Otherwise, join is better.

7) WHERE EXISTS can be better than join when
driving from parent records and want to make sure
that at least on child exists. Optimizer knows to
bail out as soon as finds one record. Join would
get all records and then distinct them!

8) In reports, most of the time fewer queries will
work faster. Each query results in a cursor that
Reports has to open and fetch. See Reports Ref
Manual for exceptions.

9) Avoid NOT in or NOT = on indexed columns.
They prevent the optimizer from using indexes.
Use where amount > 0 instead of where amount !=
0.

10) Avoid writing where project_category is not null.
nulls can prevent the optimizer from using an
index.

11) Consider using IN or UNION in place of OR on
indexed columns. ORs on indexed columns causes
the optimizer to perform a full table scan.

12) Avoid calculations on indexed columns. Write
WHERE approved_amt > 26000/3 instead of
WHERE approved_amt/3 > 26000.

13) Avoid this:
SUBSTR(haou.attribute1,1,LENGTH(':p_otc'))
= :p_otc). Consider this: WHERE haou.attribute1
like :p_otc||'%' .

14) Talk to your DBA. If you think that a column used
in a WHERE clause should have an index, don't
assume that an index was defined. Check and talk
to your DBA if you don't find any.

15) Consider replacing outer joins on indexed columns
with UNIONs. A nested loop outer takes more
time than a nested loop unioned with another table
access by index.

16) Consider adding small frequently accessed
columns (not frequently updated) to an existing
index. This will enable some queries to work only
with the index, not the table.

17) Consider NOT EXISTS instead of NOT IN.
18) If a query is going to read most of the records in a

table (more than 60%), use a full table scan.
19) Try to group multiple sub queries into one.

V.N.Sanyasi Rao et al | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,344-346

www.ijcset.net 345

IV. BEYOND THE SIMPLE STUFF

 If you want to actually understand what you are
doing, here are a few things that you need to start
playing with:

 Get into EXPLAIN_PLAN. There are multiple
way of doing this. The less user friendly is to
simply issue this in SQL*Plus: explain plan set
statement_id = 'HDD1' for <Your DML SQL
statement>;

 Look at the trace from Oracle Reports. It tells you
how much time it spends on each query. With r25:
C:\ORANT\BIN\R25RUN32.EXE
module=p:\old\bcmtrka1_hdd.rdf
userid=opps/opps@new tracefile=p:\trace3.txt
 trace_opts=(trace_all).

 Use the SQL Trace by issuing an alter session set
sql_trace=true; then look at it with TKPROF
<something>.trc <something>.lis sort=(EXECPU).

If you remember nothing else.

 Don't apply these guidelines blindly,
EXPERIMENT: compare one method to another.
Do NOT expect that one trick will work all the
time.

 Educate yourself: read, read, read. It SAVES
time!.

V. TIPS FOR AVOIDING PROBLEMATIC QUERIES

These tips provide a solid foundation for two outcomes:
making a SQL statements perform better, and determining
that nothing else can be done in this regard (i.e., you have
done all you can with the SQL statement, time to move on
to another area). [4],[5].

The 17 tips are listed below.

1) Avoid Cartesian products

2) Avoid full table scans on large tables

3) Use SQL standards and conventions to reduce
parsing

4) Lack of indexes on columns contained in the
WHERE Clause.

5) Avoid joining too many tables.

6) Monitor V$SESSION_LONGOPS to detect long

 running operations.

7) Use hints as appropriate

8) Use the SHARED_CURSOR parameter.

9) Use the Rule-based optimizer if I is better than the

 Cost-based optimizer.

10) Avoid unnecessary sorting

11) Monitor index browning (due to deletions; rebuild
as necessary)

12) Use compound indexes with care (Do not repeat

 columns)

13) Monitor query statistics

14) Use different tablespaces for tables and indexes (as
a general rule; this is old-school somewhat, but the

 main point is reduce I/O contention)

15) Use table partitioning (and local indexes) when

 appropriate (partitioning is an extra cost feature)

16) Use literals in the WHERE clause (use bind
variables)

17) Keep statistics up to date.

VI. CONCLUSIONS

This paper provides some helpful tips related to
performance improvements against any relational database.
We hope that after reading this paper the reader can modify
their design and/or queries within their application that
returns optimum result and saves development time.

ACKNOWLEDGMENT

We would like to thank all our lab assistants’ timely co-
operation and guidance in completing the paper. We greatly
acknowledge the management and staff of our organization
for their support and for providing lab facilities.

REFERENCES
[1] Oracle9i Database Performance Guide and Reference. Connie

Dialeris Green,2002.
[2] Oracle Enterprise Manager Database Tuning with the Oracle

Tuning Pack Release 9.0.1 wiki pedia. Part Number A86647-01.
[3] SQL Performance Tuning Peter Gulutzan, Trudy Pelzer Addison-

Wesley Professional, 2003.
[4] Oracle9i Performance Tuning: Optimizing Database Productivity

by Hassan Afyouni (Thompson Course Technology, 2004).
[5] Oracle SQL tuning - Tune individual SQL statements Oracle Tips

by Burleson Consulting.

V.N.Sanyasi Rao et al | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,344-346

www.ijcset.net 346

