

Performance Analysis of TCP Congestion Control
Algorithms

Priyanka K. Shinde, Prof. Nitin R. Chopde,

Department Of Computer Science and Engineering,
G. H. Raisoni College of Engineering

Abstract— The demand for fast transfer of larger volume of
data, and the deployment of the network infrastructures is
ever increasing. However, TCP is the dominant transport
protocol of today, does not meet this demand because it favors
reliability over timeliness and fails to fully utilize the network
capacity due to its limitations of its conservative congestion
control algorithm. The slow response of TCP in fast long
distance networks leaves sizeable unused bandwidth in such
networks. A large variety of TCP variants have been proposed
to improve the connection’s throughput by adopting more
aggressive congestion control algorithms. Some of the flavors
of TCP congestion control are loss-based, high-speed TCP
congestion control algorithms that uses packet losses as an
indication of congestion; delay-based TCP congestion control
that emphasizes packet delay rather than packet loss as a
signal to determine the rate at which to send packets. Some
efforts combine the features of loss-based and delay-based
algorithms to achieve fair bandwidth allocation and fairness
among flows. A comparative analysis between different
flavors of TCP congestion control namely Standard TCP
congestion control (TCP Reno), loss-based TCP congestion
control (HighSpeed TCP, Scalable TCP, CUBIC TCP), delay-
based TCP congestion control (TCP Vegas) and mixed loss-
delay based TCP congestion control (Compound TCP) is
presented here in the paper.

Key words— Congestion control, High-speed networks, TCP.

1. INTRODUCTION
Moving bulk data quickly over high-speed data

network is a requirement of many applications. These
applications require high-bandwidth links between network
nodes. To maintain the stability of Internet all applications
should be subjected to congestion control. TCP is well-
developed, extensively used and widely available Internet
transport protocol. TCP is fast, efficient and window size,
thus it hurts the data rate. Standard TCP contains the
congestion window that can be achieved in realistic
environments. In the past few years, we notice that a surge
of TCP variants address the under utilization problem
responsive to network congestion conditions but TCP’s
AIMD congestion back-off algorithm [1] is too abrupt in
decreasing the most notably due to the slow growth of TCP
congestion window that makes TCP unfavorable for high
BDP networks. In this paper we describe Standard TCP
congestion control algorithm. The related paper is
organized as related work including TCP modifications and
new protocols are reviewed in section 1. Three prominent
window-based high-speed TCP congestion control
algorithms that use packet-loss as an implicit indication of
congestion are described in section 2. Compound TCP and

Zeta TCP approach is described in section 3. Further
Classification of congestion control mechanism according
to their properties is described in paper in section 4.
Propose work is described in section 5. Finally this work is
concluded in section 6.

I. BACKGROUND AND RELATED WORK
The standard TCP congestion control algorithm which

we refer to as TCP Reno[1] was developed in 1988. Further
there is several enhancements in TCP Reno. Few
modifications addressing the conservative approach of TCP
to update its congestion window under congestion
condition are:
i. Loss-based TCP congestion control: HSTCP, BIC-

TCP, STCP, CUBIC-TCP, HTCP etc.
ii. Delay-based congestion control: TCP-Vegas, Fast-TCP

, TCP-LP etc.
iii. Learning- based TCP congestion control: Compound

TCP, Zeta TCP etc.
Most of these protocols deal with modifying the

window growth function of TCP in a more scalable fashion.
Tomoya[2] proposed a TCP-friendly congestion control
that realizes efficient data transmission in highspeed
networks, fairness with TCP Reno and fair bandwidth
allocation among flows with different RTTs.]

a) TCP Reno
TCP Reno[2] implements the TCP’s AIMD

mechanism of increasing the congestion window W by one
segment per round-trip time for each received ACK and
halving the congestion window for each loss event per
round-trip time. TCP Reno controls the congestion window
as follows:
Increase:

W= W + 1÷W (1)
Decrease:

W= W- 1 ÷W (2)
When the link bandwidth does not change, TCP Reno
periodically repeats the window increase and decrease.TCP
Reno’s congestion window in terms of packet loss rate (p)
is defined as:

Wreno = 1.22 (3)
 P0.5

As shown above, TCP Reno places a serious constraint
on the congestion window that can be achieved by TCP in
realistic environments. TCP requires extremely small
packet loss rate to sustain a large window which is not
possible in real life networks.

Priyanka K. Shinde et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,100-102

www.ijcset.net 100

b) High-Speed TCP
Although TCP performs very well in low to middle

speed networks[11] (Kbps to several Mbps), it has very
poor performance in high (tens of Mbps to Gbps) to very
high (Gbps to Tbps) speed networks, as TCP is very
inefficient in utilizing the high-speed network bandwidth.
HighSpeed TCP (HSTCP) is a modification toTCP’s
congestion control mechanism for use with TCP
connections with large congestion windows. HighSpeed
TCP’s modified response function only takes effect with
higher congestion windows, it does not modify TCP
behavior in environments with heavy congestion, and
therefore does not introduce any new dangers of congestion
collapse. HSTCP uses three parameters, WL, WH, and PH.
To ensure TCP compatibility, HSTCP uses the same
response function as TCP Reno when the current
congestion window is WL at most, and uses the HSTCP
response function when the current congestion window is
greater than WL.
HSTCP response function is computed as follows:

Whighspeed = 0.12 (4)
 P0.835

It is clear from equation that HSTCP is more
aggressive than TCP Reno and a HighSpeed TCP
connection would receive ten times the bandwidth of a
standard TCP in an environment with packet drop rate
of10-6, which is unfair.

c) Scalable TCP
Scalable TCP[13] is designed to be incrementally

deployable and behaves identically to traditional TCP
stacks when small windows are sufficient. Scalable TCP
(STCP) and HighSpeed TCP were originally designed for
high-speed backbone links, and they appear to be the major
candidates for replacing in the next generation Internet the
current congestion control mechanism implemented by
standard TCP. STCP is a simple sender side modification to
TCP congestion control, and it employs Multiplicative
Increase Multiplicative Decrease (MIMD) technique. Using
Scalable TCP, better utilization of a network link with the
high bandwidth delay product can be achieved. If STCP is
mixed with regular TCP then STCP dominates the
bandwidth for sufficiently large bandwidth-delay product
region. This shows unfriendliness towards standard TCP.

d) Cubic TCP
Cubic TCP[16] is an enhanced version of Binary

Increase Congestion Control shortly BIC. It simplifies the
BIC window control function and improves its TCP-
friendliness and RTT fairness as BIC’s growth function is
too aggressive for TCP especially under short RTT or low
speed networks. As the name of the protocol represents, the
window growth function of CUBIC is a cubic function in
terms of the elapsed time since the last loss event, whose
shape is very similar to the growth function of BIC. CUBIC
function provides good scalability and stability. The
protocol keeps the window growth rate independent of
RTT, which keeps the protocol TCP friendly under short
and long RTTs. The congestion epoch period of CUBIC is
determined by the packet loss rate alone. As TCP’s
throughput is defined by the packet loss rate as well as
RTT, the throughput of CUBIC is defined only by the

packet loss rate. Thus, when the loss rate is high and/or
RTT is short, CUBIC can operate in a TCP mode.

ii . DELAY-BASED CONGESTION CONTROL
 Delay-based TCP congestion control algorithms like TCP
Vegas attempt to utilize the congestion information Contained
in packet round-trip time (RTT) samples.
a) TCP Vegas
 TCP Vegas is a TCP congestion control algorithm that
emphasizes packet delay, rather than packet loss, as a
signal to determine the rate at which to send packets. TCP
Vegas detects congestion based on increasing Round Trip
Time (RTT) values of the packets in the connection unlike
TCP Reno which detect congestion only after it has
actually happened via packet drops. The algorithm depends
heavily on accurate calculation of the Base RTT value.
Base RTT is set to be the minimum of all measured RTTs;
it is commonly the RTT of the first segment sent by the
connection.

iii .LEARNING BASED CONGESTION CONTROL
 Loss-based high speed algorithms are aggressive to
satisfy bandwidth requirement but this aggressiveness
causes TCP unfairness and RTT unfairness. Delay-based
approaches provide RTT fairness but it is difficult to meet
TCP fairness. Thus there is another approach i.e. learning
based approaches that address the problems in the two
approaches.
a) Compound TCP
 Compound TCP integrates a scalable delay-based
component into the standard TCP congestion avoidance
algorithm. This scalable delay-based component has a fast
window increase function when the network is under-
utilised and reduces the sending rate when a congestion
event is sensed. To implement Compound TCP maintains
the following state variables; cwnd (congestion window),
dwnd (delay window), awnd
(Receiver advertised window).
b) ZETA TCP

The accurate and rapid detection of packet loss
capabilities of Zeta TCP[21] is especially valuable with the
explosive growth of mobile networks. The flaky last mile
fading channel to the mobile devices creates frequent bulk
packet loss. Such loss triggers standard and delay-based
TCP to jam more packets into the network, which actually
causes more problems. ZetaTCP, analyzes the situation
intelligently and allows rapid and efficient recovery from
packet loss and enables a smoother transmission and
maximum throughput.

I. CLASSIFICATION
The following is one possible classification according

to the following properties:
1. The type and amount of feedback received from

the network: Loss (L); delay (D); single-bit (S) or
multi-bit (M) explicit signals

2. Incremental deploy ability on the current Internet:
Sender needs modification (S); receiver needs
modification (R); routers/gateways need
modification (G)

Priyanka K. Shinde et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,100-102

www.ijcset.net 101

3. The aspect of performance it aims to improve:
high bandwidth delay product networks (B); lossy
links (L); fairness (F); advantage to short flows
(S); variable-rate links (V); speed of
covergenec(C)

4. The fairness criterion it uses: max-min (M),
proportional (P), "minimum potential delay" (D),
Other (O)

Some well-known congestion avoidance mechanisms
are classified[19][20] by this scheme are as follows:

TABLE Ι
CLASSIFICATION OF CONGESTION AVOIDANCE MECHANISM

Variant Feedback Changes Benefits Fairness

(New)Reno L - - D

Vegas D S Less loss P

High Speed L S B O

BIC L S B O

CUBIC L S B O

H-TCP L S B O

FAST D S B P

Compound
TCP

L/D S B P

Westwood L/D S L O

Jersey L/D S L O

CLAMP M G/R V M

TFRC L S/R
No

Retransmission
D

XCP M S/G/R BLFC M

VCP M(2 bits) S/G/R BLF P

II. PROPOSE WORK

TCP is relied upon to carry more than 90% of all
Internet traffic. It has become essential to stay with today’s
demands of impatient end-users to effectively delivering
latency sensitive web applications. In order to keep up with
these demands, various TCP optimization approaches have
been developed now. Applying optimization techniques to
standard, loss-based TCP provides some improvement. But
as long as network speed is governed by loss, a high data-
rate and stable throughput will be impossible to achieve. A
more modern delay-based approach can provide some
fundamental improvement to dealing with network latency,
but for the most part in it remains a static. An advanced
learning-based approach is needed that is capable of
observing session characteristics on-the-fly in order to
apply it intelligentelly, session-specific transport
optimizations. Advanced learning-based TCP is now use by
hundreds of companies and millions of users to accelerate
the latency-sensitive applications. It is able to provide these
capabilities in a completely transparent manner.

III. CONCLUSION
TCP Reno was commonly implemented algorithm.

Most others are competing proposals which still need some
evaluation. Starting with 2.6.8 the Linux kernel switched

the default implementation was again changed to CUBIC in
the 2.6.19 version. FreeBSD uses New Reno as the default
algorithm. However, it supports a number of other choices.
When the per-flow product of bandwidth and latency
increases, regardless of the queuing scheme, TCP prone to
instability and becomes inefficient. This becomes
increasingly important as the Internet evolves to
incorporate very high-bandwidth optical links.TCP
Interactive allows applications to subscribe to TCP events
and it respond accordingly enabling various functional
extensions to TCP from outside TCP layer. Most of the
TCP congestion schemes work internally. Zeta-TCP detects
the congestions from both the loss rate measures and
latency, and applies different CWND back off strategies
based on the likelihood of the congestions to maximize its
goodput. It also has a couple of other improvements to
accurately detect the packet losses, accelerate/control the
inbound (download) traffic and avoiding RTO
retransmission.

REFERENCES
 [1]. V. Jacobson, “Congestion avoidance and control,” the ACM

SIGCOMM’88.
[2].Tomoya Hatano, Hiroshi Shigeno and Ken-ichi Okada,“TCP friendly

congestion control for highSpeed Network” IEEE, 2007.
[3]. David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hedge, “Fast

TCP: Motivation, Architecture, Algorithms, Performance”,
IEEE/ACM transactions on networking, 2006.

[4]. W. Stevens, “TCP Slow Start, Congestion Avoidance,Fast Retransmit,
and Fast Recovery Algorithms”, RFC2001, Jan. 1997.

[5]. M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”,
RFC 2581, Apr. 1999.

[6]. S. Floyd and T. Henderson, “The NewReno modification to TCP’s
fast recovery algorithm”, RFC 2582, Apr. 1999.

[7]. V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC 1323, May 1992

[8]. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” RFC 2018, Oct. 1996.

[9]. Jon Postel, “Transmission Control Protocol,” RFC 793 September
1981,

[10]. Allman, M., Balakrishnan, H. and S. Floyd, “Enhancing TCP’s Loss
Recovery using Limited Transmit:, RFC 3042, January 2001.

[11]. S. Floyd: “HighSpeed TCP for Large Congestion Windows”, RFC
3649, December 2003

[12]. Lisong Xu, Khaled Harfoush, and Injong Rhee: “Binary Increase
Congestion Control for Fast, Long DistancE Networks”, 2003.

[13]. Tom Kelly: “Scalable TCP: Improving performance in high-speed
wide area networks”; ACM SIGCOMM IJCSA Issue 1,
Volume 2, 200837Computer Communication review, April 2003.

[14]. Hamed Vahdet Nejad, Mohammad Hossien Yaghmaee, Hamid
Tabatabaee, “Fuzzy TCP: Optimizing TCP Congestion Control”,
IEEE, 2006

[15]. M. Allman, S. Floyd, C.Partridge, “Increasing TCP’s initial
window”, September 1998

[16]. Injong Rhee, and Lisong Xu: “CUBIC: A New TCPFriendly High-
Speed TCP Variant”, Sangtae Ha, Injong Rhee, Lisong Xu.

[17]. D. Leith, and R. Shorten: “H-TCP: TCP Congestion Control for High
Bandwidth-Delay Product Paths”,June20, 2005

[18].Lefteris Mamata, Tobias Harks, and Vassils Tsaoussidis:
“Approaches to congestion control in packet networks”,JIE VOL, 1
NO. 1, January 2007.

[19]. Peng Yang, Member, IEEE, Juan Shao, Wen Luo, Lisong Xu,
Member, IEEE, Jitender Deogun, Member, IEEE, and Ying Lu,
Member, IEEE, ”TCP Congestion Avoidance Algorithm
Identification”,IEEE, 2013.

[20]. Jingyuan Wang, Jiangtao Wen, Fellow, IEEE, Yuxing Han, Jun
Zhang, Chao Li, and Zhang Xiong “TCP-FIT:An Improved TCP
Congestion Avoidance Algorithm for Heterogeneous Networks”
IEEE, 2011.

Priyanka K. Shinde et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,100-102

www.ijcset.net 102

