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Abstract-Cloud data centers host diverse applications, mixing 
in the same network a plethora of workflows that require 
small predictable latency with others requiring large sustained 
throughput. In this environment, today’s state-of-the-art TCP 
protocol falls short. We present measurements of a 6000 
server production cluster and reveal network impairments, 
such as queue buildup, buffer pressure, and incast, that lead to 
high application latencies. Using these insights, propose a 
variant of TCP, DCTCP, for data center networks. DCTCP 
leverages Explicit Congestion Notification (ECN) and a simple 
multibit feedback mechanism at the host. We evaluate DCTCP 
at 1 and 10Gbps speeds, through benchmark experiments and 
analysis. In the data center, operating with commodity,shallow 
buffered switches, DCTCP delivers the same or better 
throughput than TCP, while using 90% less buffer space. 
Unlike TCP, it also provides hight burst tolerance and low 
latency for short flows. While TCP’s limitations cause our 
developers to restrict the traffic they send today, using 
DCTCP enables the applications to handle 10X the current 
background traffic, without impacting foreground traffic. Fur-
ther, a 10X increase in foreground traffic does not cause any 
timeouts, thus largely eliminating incast problems. 
 

1. INTRODUCTION 
In recent years, data centers have transformed computing, 
with large scale consolidation of enterprise IT into data 
center hubs, and with the emergence of cloud computing 
service providers like Amazon, Microsoft and Google. A 
consistent theme in data center design has been to build 
highly available, highly performant computing and storage 
infrastructure using low cost, commodity components 
[18,5]. A corresponding trend has also emerged in data 
center networks. In particular, low-cost switches are 
common at the top of the rack, providing up to 48 ports at 
1Gbps, at a price point under $2000 — roughly the price of 
one data center server. Several recent research proposals 
envision creating economical, easy-to-manage data centers 
using novel architectures built atop these commodity 
switches [3,14,17] 
Is this vision realistic? The answer depends in large part on 
how well the commodity switches handle the traffic of real 
data center applications. In this paper, we focus on soft real-
time applications, such as web search, retail, advertising, 
and recommendation systems that have driven much of the 
data center construction. We find that these applications 

generate a diverse mix of short and long flows, and require 
three things from the data center network: low latency for 
short flows, high burst tolerance, and high utilization for 
long flows. 
The first two requirements stem from the 
Partition/Aggregate workflow pattern that many of these 
applications use. The soft real-time deadlines for end results 
translate into latency targets for the individual tasks in the 
workflow. These targets vary from  10ms to  100ms, and 
tasks not completed before their deadline are cancelled, 
affecting the final result. Thus, application requirements for 
low latency directly impact the quality of the result returned 
and thus revenue. Reducing network latency allows 
application developers to shift more cycles to the 
algorithms that improve relevance and end user experience. 
The third requirement, high utilization for large flows, 
stems from the need to continuously update internal data 
structures of these applications, as the freshness of this data 
also affects the quality of results. High throughput for long 
flows that update the data is thus as essential as low latency 
and burst tolerance. 
In this paper, we make two major contributions: 
1. We measure and analyze production data center traffic 
that uses commodity switches (>150TB of compressed 

data), collected over the course of a month from  6000 
servers (x2), extracting application patterns and needs (in 
particular, low latency needs). Impairments that hurt 
performance are identified, and linked to properties of the 
traffic and the switches. 

2.We propose a TCP variant, DCTCP, which addresses 
these impairments to meet the needs of applications (x3). 
DCTCP uses Explicit Congestion Notification (ECN), a 
feature already available in modern commodity switches. 
We evaluate DCTCP at 1 and 10Gbps speeds on ECN-
capable commodity switches (x4). We find DCTCP 
successfully supports 10X increases in application 
foreground and background traffic in our benchmark 
studies. 

The measurements reveal that the data center’s traffic 
consists of query traffic (2KB to 20KB), delay sensitive 
short messages (100KB to 1MB), and throughput sensitive 
long flows (1MB to 100MB). We find that the query traffic 
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experiences the incast impairment, discussed in [32, 15] in 
the context of storage networks. However, the data also 
reveal new impairments unrelated to incast: query and 
delay-sensitive short messages experience long latencies 
due to long flows consuming some or all of the available 
buffer in the switches. Our key learning from these 
measurements is that to meet the requirements of such a 
diverse mix of short and long flows, switch buffer 
occupancies need to be persistently low, while maintaining 
high throughput for the long flows. DCTCP is designed to 
do exactly this. 
DCTCP combines Explicit Congestion Notification (ECN) 
with a novel control scheme at the sources. It extracts 
multi-bit  

 
Figure 1: Queue length measured on a Broadcom Triumph switch. Two 
long flows are launched from distinct 1Gbps ports to a common 1Gbps 
port. Switch has dynamic memory management enabled, allowing flows to 
a common receiver to dynamically grab up to 700KB of buffer. 

 
feedback on congestion in the network from the single bit 
stream of ECN marks. Sources estimate the fraction of 
marked packets, and use that estimate as a signal for the 
extent of congestion. This allows DCTCP to operate with 
very low buffer occupancies while still achieving high 
throughput. Figure 1 illustrates the effectiveness of DCTCP 
in achieving full throughput while taking up a very small 
footprint in the switch packet buffer, as compared to TCP. 
While designing DCTCP, a key requirement was that it be 
implementable with mechanisms in existing hardware — 
meaning our evaluation can be conducted on physical 
hardware, and the solution can be deployed to our data 
centers. The industry reality is that after years of debate and 
consensus building, a very small number of mechanisms, 
such as basic RED and ECN, are realized in hardware. 
We deliberately concentrate on the data center environment, 
and on TCP (which makes up 99 :91% of the traffic in our 
data centers). Our solution confronts the many differences 
between the data center environment and wide area 
networks (WANs), where most of the prior work on TCP 
has focused (x5). For example, we observe empty queue 
Round Trip Times (RTTs) to be consistently under 250  s. 
Further, applications have simultaneous needs for 
extremely high bandwidths and very low latencies, and 
often there is little statistical multiplexing: a single flow can 
dominate a particular path. 
At the same time, we leverage luxuries not available in the 
WAN. The data center environment is largely homogeneous 
and under a single administrative control. Thus, backward 
compatibility, incremental deployment and fairness to 
legacy protocols are not major concerns. Connectivity to 

the external Internet is typically managed through load 
balancers and application proxies that effectively separate 
internal traffic from external, so issues of fairness with 
conventional TCP are irrelevant. 
The TCP literature is vast, and there are two large families 
of congestion control protocols that also attempt to control 
queue lengths: (i) Implicit delay-based protocols use 
increases in RTT measurements as a sign of growing 
queueing delay, and hence of congestion. These protocols 
rely heavily on accurate RTT measurement, which is 
susceptible to noise in the very low latency environment of 
data center 

 
�Figure 2: The partition/aggregate design pattern 

 
Small noisy fluctuations of latency become 
indistinguishable from congestion and the algorithm can 
over-react. (ii) Active Queue Management (AQM) 
approaches use explicit feedback from congested switches. 
The algorithm we propose is in this family. Other 
approaches for obtaining short latencies include QoS and 
dividing network traffic into classes. However, QoS 
requires application developers to agree on how traffic is 
prioritized in a dynamic multi-application environment. 
Having measured and analyzed the traffic in the cluster and 
associated impairments in depth, we find that DCTCP 
provides all the benefits we seek. DCTCP requires only 30 
lines of code change to TCP, and the setting of a single 
parameter on the switches. 
 

2. COMMUNICATIONS IN DATA CENTERS 
To understand the challenges facing data center transport 
protocols, we first describe a common application structure, 
Partition/Aggregate, that motivates why latency is a critical 
metric in data centers. We then measure the synchronized 
and bursty traffic patterns that result, and we identify three 
performance impairments these patterns cause. 
2.1 Partition/Aggregate 
The Partition/Aggregate design pattern shown in Figure 2 is 
the foundation of many large scale web applications. 
Requests from higher layers of the application are broken 
into pieces and farmed out to workers in lower layers. The 
responses of these workers are aggregated to produce a 
result. Web search, social network content composition, and 
advertisement selection are all based around this application 
design pattern. For interactive, soft-real-time applications 
like these, latency is the key metric, with total permissible 
latency being determined by factors including customer 
impact studies[21] . After subtracting typical Internet and 
rendering delays, the “backend” part of the application is 
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typically allocated between 230-300ms. This limit is called 
an all-up SLA. 
Many applications have a multi-layer partition/aggregate 
pattern workflow, with lags at one layer delaying the 
initiation of others. Further, answering a request may 
require iteratively invoking the pattern, with an aggregator 
making serial requests to the workers below it to prepare a 
response. (1 to 4 iterations are typical, though as many as 
20 may occur.) For example, in web search, a query might 
be sent to many aggregators and workers, each responsible 
for a different part of the index. Based on the replies, an 
aggre-gator might refine the query and send it out again to 
improve the relevance of the result. Lagging instances of 
partition/aggregate can thus add up to threaten the all-up 
SLAs for queries. Indeed, we found that latencies run close 
to SLA targets, as developers exploit all of the available 
time budget to compute the best result possible. 
To prevent the all-up SLA from being violated, worker 
nodes are typically assigned tight deadlines, usually on the 
order of 10-100ms. When a node misses its deadline, the 
computation continues without that response, lowering the 
quality of the result. Further, high percentiles for worker 
latencies matter. For example, high latencies at the 99 :9 
percentile mean lower quality results or long lags (or both) 
for at least 1 in 1000 responses, potentially impacting large 
numbers of users who then may not come back. Therefore, 
percentiles are typically tracked to 99 :9 percentiles, and 
deadlines are associated with high percentiles. Figure 8 
shows a screen shot from a production monitoring tool, 
focusing on a 5ms issue. 
With such tight deadlines, network delays within 
the data center play a significant role in 
application design. Many applications find it so hard 
to meet these deadlines using stateof-the-art TCP that they 
often take on enormous amount of complexity to get around 
it. For example, our application reduces the amount of data 
each worker sends and employs jitter. Facebook, reportedly, 
has gone to the extent of developing their own UDP-based 
congestion control [29] 
2.2 Workload Characterization 
We next measure the attributes of workloads in three 
production clusters related to web search and other services. 
The measurements serve to illuminate the nature of data 
center traffic, and they provide the basis for understanding 
why TCP behaves poorly and for the creation of 
benchmarks for evaluating DCTCP. 
We instrumented a total of over 6000 servers in over 150 
racks. The three clusters support soft real-time query traffic, 
integrated with urgent short message traffic that coordinates 
the activities in the cluster and continuous background 
traffic that ingests and organizes the massive data needed to 
sustain the quality of the query responses. We use these 
terms for ease of explanation and for analysis, the 
developers do not separate flows in simple sets of classes. 
The instrumentation passively collects socket level logs, 
selected packetlevel logs, and app-level logs describing 
latencies – a total of about 150TB of compressed data over 
the course of a month. 
Each rack in the clusters holds 44 servers. Each server 
connects to a Top of Rack switch (ToR) via 1 Gbps 

Ethernet. The ToRs are shallow buffered, shared-memory 
switches; each with 4 MB of buffer shared among 48 1 
Gbps ports and two 10Gbps ports. 
Query Traffic. Query traffic in the clusters follows the 
Partition/Aggregate pattern. The query traffic consists of 
very short, latency-critical flows, following a relatively 
simple pattern, with a high-level aggregator (HLA) 
partitioning queries to a large number of mid-level 
aggregators (MLAs) that in turn partition each query over 
the 43 other servers in the same rack as the mid-level 
aggregator. Servers act as both MLAs and workers, so each 
server will be acting as an aggregator for some queries at 
the same time it is acting as a worker for other queries. 
Figure 3(a) shows the CDF of time between arrivals of 
queries at mid-level aggregators. The size of the query 
flows is extremely regular, with queries from MLAs to 
workers being 1.6 KB and responses from workers to 
MLAs being 1.6 to 2 KB. 
Background Traffic. Concurrent with the query traffic is a 
complex mix of background traffic, consisting of both large 
and small flows. Figure 4 presents the PDF of background 
flow size, illustrating how most background flows are small, 
but most of the bytes in background traffic are part of large 
flows. Key among background flows are large, 5KB to 
50MB, update flows that copy fresh data to the workers and 
time-sensitive short message flows, 50KB to 1MB in size, 
that update control state on the workers. Figure 3(b) shows 
the time between arrival of new background flows. The 
interarrival time between background flows reflects the 
superposition and diversity of the many different services 
supporting the application: (1) the variance in interarrival 
time is very high, with a very heavy tail; (2) embedded 
spikes occur, for example the 0ms inter-arrivals that explain 
the CDF hugging the y-axis up to the 50 percentile; and (3) 
relatively large numbers of outgoing flows occur 
periodically, resulting from workers periodically polling a 
number of peers looking for updated files. 

 
Figure 3: Time between arrival of new work for the Aggregator (queries) 
and between background flows between servers (update and short 
message). 
 

 
 
Figure 4: PDF of flow size distribution for background traffic. PDF of 
Total Bytes shows probability a randomly selected byte would come from 
a flow of given size. 
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Flow Concurrency and Size. Figure 5 presents the 
CDF of the number of flows a MLA or worker 
node participates in concurrently (defined as the 
number of flows active during a 50 ms window). 
When all flows are considered, the median 

 
Figure 5: Distribution of number of concurrent connections. 
 

number of concurrent flows is 36, which results from the 
breadth of the Partition/Aggregate traffic pattern in which 
each server talks to 43 other servers. The 99.99th percentile 
is over 1,600, and there is one server with a median of 
1,200 connections. 
When only large flows (>1MB) are considered, the degree 
of statistical multiplexing is very low — the median 
number of concurrent large flows is 1, and the 75th 
percentile is 2. Yet, these flows are large enough that they 
last several RTTs, and can consume significant buffer space 
by causing queue buildup. 

In summary, throughput-sensitive large flows, 
delay sensitive short flows and bursty query 
traffic, co-exist in a data center network. In the 
next section, we will see how TCP fails to satisfy 
the performance requirements of these flows. 

 
3. THE DCTCP ALGORITHM 

The main goal of DCTCP is to achieve high burst tolerance, 
low latency, and high throughput, with commodity shallow 
buffered switches. To this end, DCTCP is designed to 
operate with very small queue occupancies, without loss of 
throughput. 

DCTCP achieves these goals primarily by 
reacting to congestion in proportion to the extent 
of congestion. DCTCP uses a very simple 
marking scheme at switches that sets the 
Congestion Experienced (CE) codepoint of 
packets as soon 

 

 
 

Figure 6: DCTCP’s AQM scheme is a variant of RED: Low and High 
marking thresholds are equal, and marking is based on the instantaneous 
queue length. 

 
as the buffer occupancy exceeds a fixed small threshold. 
The DCTCP source reacts by reducing the window by a 
factor that depends on the fraction of marked packets: the 
larger the fraction, the bigger the decrease factor.  

It is important to note that the key contribution 
here is not the control law itself. It is the act of 
deriving multi-bit feedback from the information 
present in the single-bit sequence of marks. Other 
control laws that act upon this information can be 
derived as well. Since DCTCP requires the 
network to provide only single-bit feedback, we 
are able to re-use much of the ECN machinery 
that is already available in modern TCP stacks 
and switches. 
We note that the idea of reacting in proportion to the extent 
of congestion is also used by delay-based congestion 
algorithms [6,31]Indeed, one can view path delay 
information as implicit multi-bit feedback. However, at 
very high data rates and with low-latency network fabrics, 
sensing the queue buildup in shallow-buffered switches can 
be extremely noisy. For example, a 10 packet backlog 
constitutes 120s of queuing delay at 1 Gbps, and only 
12  sat 10 Gbps. The accurate measurement of such small 
increases in queueing delay is a daunting task for today’s 
servers. 
The need for reacting in proportion to the extent of 
congestion is especially acute in the absence of large-scale 
statistical multiplexing. Standard TCP cuts its window size 
by a factor of 2 when it receives ECN notification. In effect, 
TCP reacts to presence of congestion, not to its extent  
Dropping the  
window in half causes a large mismatch between the input 
rate to the link and the available capacity. In the high speed 
data center environment where only a small number of 
flows share the buffer, this leads to buffer underflows and 
loss of throughput. 
 
3.1 Algorithm 
The DCTCP algorithm has three main components:  
(1) Simple Marking at the Switch: DCTCP employs a very 
simple active queue management scheme, shown in Figure 
10. There is only a single parameter, the marking threshold, 
K. An arriving packet is marked with the CE codepoint if 
the queue occupancy is greater than Kupon its arrival. 
Otherwise, it is not marked. The design of the DCTCP 
marking scheme is motivated by the need to minimize 
queue buildup. DCTCP aggressively marks packets when a 
queue overshoot is sensed. This allows sources to be 
notified of the queue overshoot as fast as possible. 
Figure 6  shows how the RED marking scheme 
(implemented by most modern switches) can be 
re-purposed for DCTCP. We simply need to set 
both the low and high thresholds to K, and mark 
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based on instantaneous, instead of average queue 
length. 
 (2) ECN-Echo at the Receiver: The only 
difference between a DCTCP receiver and a TCP 
receiver is the way information in the CE 
codepoints is conveyed back to the sender. RFC 
3168 states that a receiver sets the ECN-Echo flag 
in a series of ACK packets until it receives 
confirmation from the sender (through the CWR 
flag) that the congestion notification has been 
received. A DCTCP receiver, however, tries to 
accurately convey the exact sequence of marked 
packets back to the sender. The simplest way to 
do this is to ACK every packet, setting the ECN-
Echo flag if and only if the packet has a marked 
CE codepoint 

 

 
 
Figure 7 : Two state ACK generation state machine. 
 

 
However, using Delayed ACKs is important for a variety of 
reasons, including reducing the load on the data sender. To 
use delayed ACKs (one cumulative ACK for every m 
consecutively received packets the DCTCP receiver uses 
the trivial two state state-machine shown in Figure 11 to 
determine whether to set ECN-Echo bit. The states 
correspond to whether the last received packet was marked 
with the CE codepoint or not. Since the sender knows how 
many packets each ACK covers, it can exactly reconstruct 
the runs of marks seen by the receiver. 
(3) Controller at the Sender: The sender maintains a 
running estimate of the fraction of packets that are marked, 
called  , which is updated once for every window of data 
(roughly one RTT) as follows: 
  (1 g)   + g F (1) where Fis the fraction of packets that were 
marked in the 
last window of data, and 0 <g<1 is the weight given to new 
samples against the past in the estimation of  . 
Note that  is a real number between 0 and 1. Given that the 
sender receives marks for every packet when the queue 
length is higher than Kand does not receive any marks 
when the queue length is below K, the formula shown 
above implies that  is the probability that the queue is 
greater than K. Essentially,  close to 0 indicates low, 
and  close to 1 indicates high levels of congestion. 
Prior work on congestion control in the small buffer regime 
have argued that at high line rates, queue size fluctuations 

become so fast that you cannot control the queue size, only 
its distribution[25,20]. The physical significance of  is well 
aligned with this intuition: it represents a single point of the 
queue size distribution at the bottleneck link. 
The only difference between a DCTCP sender and a TCP 
sender is in how each reacts to receiving an ACK with the 
ECN-Echo flag set. All other features of TCP such as slow 
start, additive increase in congestion avoidance, or recovery 
from packet lost are left unchanged. While TCP always cuts 
its window size by a factor of 2 in response a marked ACK, 
DCTCP uses  to cut its window size as follows 

       
Thus, when  is near 0 (low congestion), the window is 
slightly reduced. In other words, DCTCP senders start 
gently reducing their window as soon as the queue exceeds 
K. This is how DCTCP maintains low queue length, while 
still ensuring high throughput. When congestion is high 
(α=1), DCTCP cuts its window in half, just like TCP. 
 

4. BENCHMARK TRAFFIC 
In the sections that follow, we evaluate how DCTCP would 
perform under the traffic patterns found in production 
clusters (x2.2). For this test, we use 45 servers connected to 
a Triumph top of rack switch by 1Gbps links. An additional 
server is connected to a 10Gbps port of the Triumph to act 
as a stand-in for the rest of the data center, and all inter-rack 
traffic is directed to/from this machine. This aligns with the 
actual data center, where each rack connects to the 
aggregation switch with a 10Gbps link. 
We generate all three types of traffic found in the cluster: 
query, short-message, and background. Query traffic is 
created following the Partition/Aggregate structure of the 
real application by having each server draw from the 
interarrival time distribution and send a query to all other 
servers in the rack, each of which then send back a 2KB 
response , 
(45  2KB  100KB total response size). For the shortmessage 
and background traffic, each server draws independently 
from the interarrival time and the flow size distributions, 
choosing an endpoint so the ratio of inter-rack to intra-rack 
flows is the same as measured in the cluster. 

 
Figure 8: Completion time of background traffic. Note the log scale on 

the Y axis. 
 

carry out these experiments using TCP and DCTCP, with 
RTO set to 10ms in both. For DCTCP experiments, K was 
set to 20 on 1Gbps links and to 65 on the 10Gbps link. 
Dynamic buffer allocation was used in all cases. We 
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generate traffic for 10 minutes, comprising over 200,000 
background flows and over 188,000 queries. 
Both query and short-message flows are time critical, their 
metric of interest is completion time. The RTT (i.e. queue 
length) and timeouts affect this delay the most. For large 
flows in the background traffic (e.g., updates), the 
throughput of the network is the main consideration. 
Figure 8 shows the mean and 95th percentile of completion 
delay for background traffic, classified by flow sizes. The 
90% confidence intervals of the mean are too tight to be 
shown. Short-messages benefit significantly from DCTCP, 
as flows from 100KB-1MB see a 3ms/message benefit at 
the mean and a 9ms benefit at 95th percentile. The 
background traffic did not suffer any timeouts with either 
protocol in this experiment. Thus, the lower latency for 
short-messages is due to DCTCP’s amelioration of queue 
buildup. 

 
 
Figure 9 : Completion time             Figure 10 :95th percentile 
                    Query traffic                     completion time  
                                                             10x background & 10x query 

 
Figure 9 shows query completion time 

statistics. DCTCP performs better than TCP, 
especially at the tail of the distribution. The 
reason is a combination of timeouts and high 
queueing delay. With TCP, 1.15% of the queries 
suffer from timeout(s). No queries suffer from 
timeouts with DCTCP. 
 Scaled traffic: The previous benchmark shows how 
DCTCP performs on today’s workloads. However, as 
explained in x2.3, the traffic parameters we measured 
reflect extensive optimization conducted by the developers 
to get the existing system into the tight SLA bounds on 
response time. For example, they restrict the size of query 
responses and update frequency, thereby trading off 
response quality for response latency. This naturally leads 
to a series of “what if” questions: how would DCTCP 
perform if query response sizes were larger? Or how would 
DCTCP perform if background traffic characteristics were 
different? We explore these questions by scaling the traffic 
in the benchmark, while keeping the structure unchanged. 
We begin by asking if using DCTCP instead of TCP would 
allow a 10X increase in both query response size and 
background flow size without sacrificing performance. We 
use the same testbed as before. We generate traffic using the 
benchmark, except we increase the size of update flows 
larger than 1MB by a factor of 10 (most bytes are in these 
flows, so this effectively increases the volume of 
background traffic by a factor of 10). Similarly, we generate 

queries as before, except that the total size of each response 
is 1MB (with 44 servers, each individual response is just 
under 25KB). We conduct the experiment for both TCP and 
DCTCP. 
Additionally, for TCP, we tried two ways of fixing its 
performance. First, we replaced the shallow-buffered 
Triumph switch with the deep-buffered CAT4948 switch. 
Second, instead of drop tail queues, we used RED with 
ECN.  
It was as difficult to tune RED parameters at 1Gbps as it 
was previously at 10Gbps: after experimentation, we found 
that setting min th= 20 ; maxth= 60 and using for the 
remaining parameters gave the best performance. 
Figure 10  shows the 95th percentile of response 
times  for the short messages (100KB-1MB) and the query 
traffic (mean and other percentiles are qualitatively similar). 
The results show DCTCP performs significantly better than 
TCP for both update and query traffic. The 95th percentile 
of completion time for short-message traffic improves by 
14ms, while query traffic improves by 136ms. With TCP, 
over 92%  of the queries suffer from timeouts, while only 
0.3% suffer from timeouts with DCTCP. 

 
Figure 10: 95th percentile of completion time 

 

In fact, short message completion time for DCTCP is 
essentially unchanged from baseline (Figure 8(b)) and, even 
at 10X larger size, only 0.3% of queries experience 
timeouts under DCTCP: in contrast TCP suffered 1.15% 
timeouts for the baseline. 
Thus, DCTCP can handle substantially more traffic without 
any adverse impact on performance. 
Deep buffered switches have been suggested as a 
fix for TCP’s incast problem, and we see this is 
true: on the CAT4948 less than 1% of the queries 
suffer from timeout with TCP, and the completion 
time is comparable to DCTCP. However, if deep 
buffers are used, the short-message traffic is 
penalized: their completion times are over 80ms, 
which is substantially higher than TCP without 
deep buffers (DCTCP is even better) 
The reason is that deep buffers cause queue 
buildup. 
We see that RED is not a solution to TCP’s 
problems either: while RED improves 
performance of short transfers by keeping average 
queue length low, the high variability (see Figure 
16) of the queue length leads to poor performance 
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for the query traffic (95% of queries experience a timeout). 
Another possible factor is that RED marks packets based on 
average queue length, and is thus slower to react to bursts 
of traffic caused by query incast. 
These results make three key points: First, if our 
data center used DCTCP it could handle 10X 
larger query responses and 10X larger 
background flows while performing better than it 
does with TCP today. Second, while using deep 
buffered switches (without ECN) improves 
performance of query traffic, it makes 
performance of short transfers worse, due to 
queue build up. Third, while RED improves 
performance of short transfers, it does not 
improve the performance of query traffic, due to 
queue length variability. 
 

 
 
Figure 12: Fraction of queries that suffer at least one timeout 

Benchmark variations: 
The intensity of our benchmark traffic can be varied either 
by increasing the arrival rate of the flows or by increasing 
their sizes. We explored both dimensions, but the results are 
similar, so we report primarily on increases in flow sizes. 
Specifically, we report on the two corners: scaling the 
background traffic while holding query traffic to the 
original benchmark size, and vice versa. 
Figure 11(a) shows that increasing the size of background 
traffic hurts the performance of both short messages and 
query traffic. As big flows cause both queue buildup delays 
and buffer pressure, which DCTCP mitigates. Figure 12(a) 
shows how increasing background traffic causes buffer 
pressure that causes query traffic timeouts, but the impact 
on TCP is greater than DCTCP. 
Figure 11(b) shows that increasing the size of the 
query responses by a factor of 10 severely 
degrades the latency of query traffic, with TCP. 
However, DCTCP handles the increased traffic 
without significant impact on the performance 
(compare Fig. 11(b) to Fig.9). The reason is 
DCTCP reducing incast timeouts: Figure 12(b) 
shows how for TCP the fraction of queries that 
suffer timeouts grows quickly with response size. 
After the response size exceeds 800KB, almost all 
queries suffer from timeout 

 
5.  CONCULSION 

In this paper, we provided detailed traffic 
measurements from a 6000 server data center 
cluster, running production soft real time 
applications, and linked these to the behavior of 
the commodity switches in use in the cluster. We 
found that to meet the needs of the observed 
diverse mix of short and long flows, switch buffer 
occupancies need to be persistently low, while 
maintaining high throughput for the long flows. A 
wide set of detailed experiments at 1 and 10Gbps 
speeds showed that DCTCP does exactly this. 
DCTCP relies on Explicit Congestion 
Notification (ECN), a feature now available on  
commodity switches rolling out in 2010. DCTCP 
succeeds through use of the multi-bit feedback 
derived from the series of ECN marks, allowing it 
to react early to congestion. We recommend 
enabling ECN and deploying DCTCP, to bring us 
one step closer to economical, high performance 
data center networks. 
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