
A Survey On Locality Awareness Request
Distribution In Cluster Based Network Servers

1 V.Hema2 DR. K.Kungumaraj

1Research Scholar, Mother Teresa Women’s University, Kodaikanal.
2Assistant Professor, Department of Computer Science, Arulmigu Palaniandavar Arts College For Women, Palani.

Abstract – A World Wide Web (WWW) Server is normally a
single machine dedicated to process a HTTP request for a
single WWW site. The number of people using the Internet
has been growing at a very fast rate, while the services
provided over the Internet are increasingly becoming mission
critical. Hence, enabling high performance, reliability, and
availability, as well as the creation of management tools, have
become key issues in the development and maintenance of
Internet servers. Servers based on clusters of workstations or
PCs are the most popular hardware platform used to meet the
growth of traffic demands in World Wide Web. A cluster
based network server consists of a front-end responsible for
request distribution and a number of back end nodes
responsible for request processing. In content-based request
distribution Front-end takes into account both the service,
and content requested with current load on back-end nodes.
The current approach for handling these issues from the
server perspective is based on the concept of load balancing.
Locality-aware request distribution (LARD) is a specific
strategy for content aware request distribution that improves
cluster performance by simultaneously achieving load
balancing and high cache hit rates in the back ends.

Keywords: Data Clustering, Server Load Balancing, Cache
Hit Rate.

1. INTRODUCTION

1.1 CLUSTER SYSTEMS
A cluster consists of two or more computers working
together to provide a higher level of availability, reliability,
and scalability than can be obtained by using a single
computer. A server cluster is a group of independent
servers running and working together as a single system to
provide high availability of services for clients. When a
failure occurs on one computer in a cluster, resources are
redirected and the workload is redistributed to another
computer in the cluster. Server clusters are designed for
applications that have long-running in-memory state or
frequently updated data. Typical uses for server clusters
include file servers, print servers, database servers, and
messaging servers.
Cluster systems are being increasingly used in the web
server management, file distribution and database
transaction. The system based with a distributor has a front-
end server (distributor), which receives all the requests
from the clients. The requests are then forwarded to the
bunch of backend servers that contain the actual content for
the clients. The requests are forwarded to the backend
servers based on various policies. The front-end consider
the service/content requested and the current load on the
back-end nodes when deciding which back-end node

should serve a given request. All back-end nodes are
considered equally capable of serving a given request with
considering the current load information of the back-end
nodes. The load between different back-ends might become
unbalanced, resulting in worse performance. Building a
LARD cluster is therefore to design a practical and efficient
strategy that achieves load balancing and high cache hit
rates on the back-ends.

1.2 Load Balancing
Web server serves web pages to clients across the Internet
or an Intranet. The web server hosts the pages, scripts,
programs, and multimedia files and serves them using
HTTP, a protocol designed to send files to web browsers
and other protocols. .In order to achieve web server
scalability, more servers need to be added to distribute the
load among the group of servers, which is also known as a
server cluster. The load distribution among these servers is
known as load balancing. Load balancing applies to all
types of servers, the application server and database server.
Load balancing is a technique that distributes processing
and communications activity evenly across a computer
network so that no single device is overwhelmed. In other
words, when multiple web servers are present in a server
group, the HTTP traffic needs to be evenly distributed
among the servers. The purpose of load balancing was done
due to the increases of traffic, complexity of the application
software and to satisfy the critical online transaction
nowadays.

2. RELATED WORK

2.1 Round Robin Technique (RR)
Round robin is a process used for network communication
and operating system load balancing. A system that works
in a round robin fashion distributes load based on the round
robin algorithm. The round robin algorithm uses its
scheduling techniques to assign processing time slices and
transfer queued data packets. Network devices such as
routers and switches implement special round robin
algorithm buffer queues, which exist in device memory and
store incoming and overloaded data for future processing.
In this technique, multiple IP addresses are associated with
a single domain name; clients are expected to choose which
server to connect to. This technique exposes to clients the
existence of multiple backend servers. This technique
works particularly well where individual servers are spread
geographically on the Internet.
Although easy to implement, round robin DNS has
problematic drawbacks, such as those arising from record

V.Hema et al | IJCSET(www.ijcset.net) | October 2015 | Vol 5, Issue 10,344-346

344

caching in the DNS hierarchy itself, as well as client-side
address caching and reuse, the combination of which can be
difficult to manage. Round robin DNS should not solely be
relied upon for service availability. If a service at one of the
addresses in the list fails, the DNS will continue to hand out
that address and clients will still attempt to reach the
inoperable service. There is no consideration for transaction
time, server load, network congestion, etc.

2.2 Weitghted Round Robin (WRR)
It is frequently necessary to distribute processing load
based on their individual server capabilities. Round-robin
or random load balancing do not focus of this nature. The
weighted load balancing policy allows you to specify a
processing load distribution ratio for each server with
respect to others. You can specify this as a positive
processing weight for each server.

Figure-1: Weighted Round Robin

The weighted round robin policy is applied based on the
current load at the backend servers. The policy is applied at
the distributor, where the requests are forwarded to the
backend servers. The distributor maintains the record of the
current load at the backend servers and it forwards the
request from the client, based on this information. The
request is forwarded to the least loaded backend server
among the bunch of servers. The request forwarding is thus
weighted based on the current load on the servers. The
server that is most loaded is relieved off the load by
forwarding the requests to the least loaded server. So, at
any given point of time, the load is evenly balanced among
all the available servers and thus providing very good load
balancing.
The main drawback of the system is that it does not
concern about the locality of the requests and the power
conservation among the servers. In case of large
deployment of cluster systems, the power consumed
becomes a very significant factor to be considered. Since
all the servers are turned ON during the entire period of
operation, the system turns out to conserve zero power.
Also, as the system does not consider the locality of the
data among the backend servers, the different data requests
land up in different servers and incur large disk latencies.
This increases the response time (service time) of the
servers and hence the throughput. Considering this, power

and locality based request distribution policies have more
significance.

3. BASIC LOCALITY AWARE REQUEST DISTRIBUTION
The objective of LARD is to combine good load balancing
and high locality. The front end is responsible for handling
new connections and passing data from the client to the
back-end nodes. It must keep track of open and closed
connections and not involved in handling outgoing data. In
Weighted round-robin request distribution the incoming
requests are distributed in round-robin fashion, weighted by
some measure of the load on the difference back-ends. This
strategy produces good balancing among back-ends but
does not consider the type of service.
The locality aware request distribution strategy is a form of
content-based request distribution, focusing on obtaining
the improved cache hit rates in the back-ends, secondary
storage capability. If the work set exceeds the size of main
memory available for caching documents, frequent cache
misses will occur. Figure 1 illustrates the principle of
LARD in a simple server with two back ends and three
targets (A,B,C) in the incoming request stream.

Figure-2: LARD with 3 Front ends and 2 servers

The distributor maintains a table of the data types available
at the backend servers’ memory. The data types are
assigned to the backend servers based on the initial
server/data partitioning and are initially distributed evenly
across the servers. When a new request arrives at the
distributor, its data type is looked up in the distributor table
and the corresponding server is identified. The request is
forwarded always to that server for that particular data type.
By this assignment, the request will incur disk latency only
during the first initial assignment to that backend server.
The consecutive requests of the same data type end up as
server memory hits, since it has already been fetched from
the disk and is now in the memory. Once the requests starts
overflowing at one of the servers, one of the least loaded
servers is added to serve that data type and the server set
for that data type starts growing. Similarly, when a server
becomes underutilized, a server is removed from the server
set. However, when there is no change in target server set
for given K seconds, the most load server is removed from
the server set. This ensures load balancing up to some
extent.

V.Hema et al | IJCSET(www.ijcset.net) | October 2015 | Vol 5, Issue 10,344-346

345

4. CONCLUSION
The LARD strategy achieves high cache hit rates and good
load balancing in a cluster server. The performance of our
strategy go beyond that of WRR substantially. Our caching
system uses cooperative and exclusive caching for static
Web documents . Separate handling of the heavy tail of the
request distribution curve may bring further benefits.
Further research is required to increase the locality and
therefore LARD can apply to dynamic content.

REFERENCES
[1]. Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter

Druschel, Willy Zwaenepoel, Erich Nahum, “Locality-aware request
distribution in clusterbasednetwork servers,” Proceedings of the
eighth international conference on Architectural support for
programming languages and operating systems, p.205-216, October
02-07, 1998, San Jose, California, United States.

[2] T. 13risco. DNS Support for Load Balancing. RFC 1794, Apr. 1995.
[3] M. J. Fceley, W. E. Morgan, F. H. Pighin, A. R. Karlin, II.M. Levy,

and C. A.Thekkath. Implementing global memory management in a
workstation cluster. In Proceedings of the FifteentACM Symposium
on Operating System Principles, Copper Mountain, CO, Dec. 1995.

[4] K. Rajamani and C. Lefurgy, “On evaluating request-distribution
schemes for saving energy in server clusters,” in Proc. Intl. Sym.
Performance Analysis of Systems and Software, March 2003.

[5] E. Pinheiro, R. Bianchini, E. V.Carrera and
T.Heath,“DynamicCluster Reconfiguration for Power and
Performance.” Kluwer Academic Publishers, 2002.

[6] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. "User-Level
Communication in Cluster-Based Servers". Proceedings of the 8th
IEEE International Symposium on High-Performance Computer
Architecture (HPCA 8), February 2002.

[7] M. Aron, D. Sanders, P. Druschel, etc, Scalable,Content-Aware
Request Distibution in Cluster-Based Network Servers., Proceedings
of 2000 USENIX Annual Technical Conference, 2000.

[8] D. Andresen, T. Yang, O. H. Ibarra, .Toward a scalable distributed
WWW server on workstation clusters., Journal of Parallel and
Distributed Computing, Vol.42, No.1, 10 April 1997, pp.91-100.

[9] Chi-Chung Hui,Samuel T.Chanson. Improved Strategies for
Dynamic Load Balancing.IEEE Concurrency,1999.

[10] C.-S. Yang, M.-Y. Luo. A content placement and management
system for distributed Web-server systems.Proc. of IEEE 20th Int.
Conf. on Distributed Computing Systems (ICDCS’2000), Taipei,
Taiwan,Apr. 2000.

[11] Michele Colajanni, Philip S. Analysis of Task Assignment Policies
in Scalable Distributed Web-server Systems,IEEE Transactions on
Parallel and Distributed Systems,vol.9,No.6,June,1998.

[12] S. Gadde R. P. Doyle, J. S. Chase and A. Vahdat. The Trickle-Down
Effect: Web Caching and Server Request Distribution. In Proc. of
6th Int. Workshop on Web Caching and Content Distribution
(WCW’01), June 2001.

[13] V. Olaru and W. F. Tichy. CARDs: Cluster Aware Remote Disks. In
Proc. of the Third IEEE/ACM Int. Symp. on Cluster Computing and
the Grid (CCGrid 2003),May 2003.

[14] M. E. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
Scheduling in Web Servers. In Proc. Of the 2nd Usenix Symposium
on Internet Technologies and Systems, October 1999.

[15] http://kb.linuxvirtualserver.org/wiki/Weighted Round- Robin
Scheduling.

[16] N. Bonvin, T. G. Papaioannou, and K. Aberer, “An economic
approach for scalable and highly-available distributed applications,”
in Proc. Of IEEE CLoud. 498-505. 2010.

[17] A. Cohen, S. Rangarajan, and J. H. Slye, “On the performance of
TCP splicing for URL-aware redirection,” in USENIX Symposium
on Internet Technologies and Systems, 1999.

[18] Yuh-Ming Chin, Do Young Eun, 2008. Minimizing File Download
Time in Stochastic Peer-to- Peer Networks. IEEE / ACM, 16(2) :
253-266.

[19] Balaji P., S. Narravula, K. Vaidyanathan, S. Krishnamoorthy and
D.K. Panda, 2004. Sockets Direct Procotol over InfiniBand in
Clusters: Is It Beneficial?. Proc. IEEE International Symp.
Performance Analysis of Systems and Software (ISPASS ’04),
pp.28-35.

[20] Kim J.H., G.S. Choi, D. Ersoz, and C.R. Das, 2004. Improving
Response Time in Cluster - Based Web Servers through Co-
scheduling. Proc. 18th International Parallel and Distributed
Processing Symposium, pp. 88-97.

V.Hema et al | IJCSET(www.ijcset.net) | October 2015 | Vol 5, Issue 10,344-346

346

