
A Review on Web Application Security

Tanvi Dhingra
Department of Computer Science and Engineering

PEC University of Technology
Chandigarh, India

Abstract— In this scientific era, web is an important part of
our lives because it provides anytime, anywhere access to
information and services. These services provided by web are
called web applications. Everyday millions of users connect to
these web applications for various activities like for business
transactions, financial transactions, social communication and
much more. Despite of such advantages, security is one of the
major issue of web applications. Web applications have been
split into browser side and server side components. In this
paper some browser side and server side attacks have been
discussed and some techniques like web application scanners
and firewalls have also been discussed to prevent these attacks.

Keywords— Web Application Security, Application Logic
Vulnerability, Web Application Scanners, Firewalls.

I. INTRODUCTION
Web Application is basically an application program that is
stored on the server and delivered over the internet with the
help of an interface called browser. Since the web
applications completely rely on internet (which is highly
unsafe from security point of view) for there working, so
security of web applications is one of the major issue these
days. Moreover ensuring web application security is a
challenging task because web applications are associated
with different layers like client layer, application layer and
data layer. So security mechanism should be designed in
such a way that it ensures security at all the layers of web
application.

A. Structure of web application
Structure of web applications include following 3 layers:

 Client layer: Client is basically the user's web
browser. The browser creates HTTP requests for
specific URLs that maps its request to second
layer i.e. application layer which maps the user's
request to the corresponding resource on the web
server.

 Application layer: It basically acts as an interface
between client layer and data layer. It includes
policies and rules in the form of code and
expression which determines the workflow that is
how data will pass from one participant to another.

 Data layer: It includes databases. It process the
query sent by application layer and generate
response to the query. Maintenance of databases is
the major issue at this layer.

B. Working of Web Applications

Web application consists of a code on both client side and
server side. Coding at client side can takes place in any
language like DHTML (HTML, XHTML, HTML x.0),
JavaScript, Java (Applets), VBScript, XML/XSL, CSS etc.
which gets executed at the browser. Authentication and
Authorization feature is usually associated with web
applications. Consider the example of Gmail web
application. When a user wants to access its Gmail account
an authentication page is displayed which consists of fields
like Login ID and password. This coding is basically in
HTML with javascript usually or another scripting language
embedded in it. When a user enters incorrect password or
login id then a message gets displayed (invalid login id or
password), this message is displayed because of the
scripting language running at the client side. Now when the
user enters the authentication information then this
information via https goes to the server. Various coding
languages can be used for coding at the server side (e.g
asp .NET, PHP, JSP etc). For example that coding at the
server side takes place in PHP. Server side languages
communicate with the database (here MySQL) for storing,
retrieving and manipulating data. PHP files are basically
connection files that makes the HTML pages dynamic.
Users request i.e request coming from clients browser is
collected in a PHP file, processed and then sent to the
MySQL database for accessibility to various resources.

Figure.1:Overview of Web Application[5]

II. SECURITY BREACHES ON WEB APPLICATIONS

A. Cross Site Scripting (XSS)
XSS is one of the most prevalent attack in web applications.
Web Applications basically consists of HTML pages. So,
the main focus of the attacker in this attack is to inject
malicious code into the HTML pages. When user access the
web application, then this HTML page with malicious
script opens in the users web browser. This script is then
executed in the users web browser leading to cross site
scripting attack (XSS). With this attack the attacker can

Tanvi Dhingra | IJCSET(www.ijcset.net) | May 2015 | Vol 5, Issue 5,127-130

127

redirect the users browser, inject virus and can hijack the
users web browser.

Figure2:Cross Site Scripting[1]

B. SQL Injection

It is the second most prevalent attack in web applications.
This attack is possible when user input is improperly
validated. In this attack the attacker illude the database by
injecting SQL commands that gets executed by the database.
This attack gives an attacker access to database which can
allow the attacker to access secret data, modify contents of
website, shut down the MySQL server etc. This is how this
attack takes place:
Consider for example that the target website uses the
following unsecured script:
<?php
$ sql= "SELECT_FROMusersWHERE
username='" .
$-POST[' username '] . " 'ANDpassword='" .
$POST [' password '] . " ' " ;
respons e = mysql query($ sql) ;
?>
After inserting malicious script, Let's take a simple
username (mostly admin or administrator) and abc as
password.
This is how the MySQL Query looks now:
SELECT*FROMusersWHEREuser=' admin '
ANDpassword=' ' OR ' a ' = ' a '
'a' = 'a is a true value, just like 1 = 1 i.e
SELECT*FROMusersWHEREuser='admin'
AND TRUE
Means attacker is logged in as an administrator by
manipulating the SQL query.

Fig.3:SQL Injection[1]

C.) Cookie Poisoning

A cookie is a piece of text that a web server can store on
users hard disk. Cookies allow a Web site to store
information on a user's machine and later retrieve it.

Cookies consists of name-value pairs[10]. In this attack, the
attacker modifies the content of the cookies to gain
unauthorized access for purposes like identity theft, opening
new accounts or gain access to existing accounts.

D). Password Guessing Attack
Authentication is one of the important step in accessing the
web applications. In password guessing attacks, attacker
gains access of a system or application with a guessed
password. Nowadays passwords are easy to crack due to the
availability of large number of automated tool like cain and
abel, john the ripper, Hashcat, Hydra etc.
Password guessing attacks takes place in 2 ways:

 Brute force attack
 Dictionary attack

E) Remote File Inclusion
Inclusion means adding something. File inclusion basically
means adding a common code into different files that are
then referenced by main application module. In this attack,
attacker gains full access of a website. This attack is mainly
prominent with PHP i.e. it make use of PHP include()
function. This is how the attack takes place, when the user
sends its request to the web application then it gets
collected by server side scripting language (PHP here) in
the include() function. Here when the input is not properly
validated then web applications might be fooled into
including remote files with malicious code. This attack
takes place at both the client side and server side.
Let us consider the following code:
$ i n c f i l e = $-REQUEST[" f i l e "] ;
include ($ i n c f i l e . " . php") ;
The first line of code extracts the value of the file parameter
from the HTTP request. The second line of code
dynamically sets the file name to be included using the
extracted value. If the web application does not properly
sanitize the value of the request parameter then this code
can be exploited.
Some other vulnerabilities existing in web applications are:

 Buffer Overows
 Denial of service
 Path manipulation
 Session Hijacking

Figure4:Vulnerabilities existing at various layers in web application

framework[9]

 Tanvi Dhingra | IJCSET(www.ijcset.net) | May 2015 | Vol 5, Issue 5,127-130

128

III. SECURITY MECHANISMS

Security is the major concern of Web Application Systems.
Security goals like data confidentiality, authenticity,
integrity, availability and non-repudiation have to be
satisfied for the efficient working of these systems. Web
applications are built from coding languages, so care must
be taken during coding phase of a web application i.e. use
of secure coding languages should be enhanced. Various
security measures should be applied during the
development phase of website i.e they should be checked
for every possible loophole during their designing phase.
Various security technologies have also been proposed to
check for various security vulnerabilites in a website. Some
of these security technologies are web application scanners,
web application firewalls, static source code analyzer,
fuzzing tools etc.

A. Web Application Firewalls

According to the Web Application Security Consortium,
a web application firewall (WAF) is an intermediary
device, sitting between a web-client and a web server,
analyzing OSI Layer-7 messages for violations in the
programmed security policy[3]. The main function of the
web application firewalls is to protect the web server
from various attacks like SQL Injection, cross site
scripting, buffer overflows etc. Web application firewalls
uses the following two approaches to detect an attack:

 Signature Based: In this approach, firewall maintains an
attack signature file(e.g cross site scripting, SQL
injection etc.).Whenever the signature of users input file
matches with stored signature, then the firewall will
block that attack from coming in.

 Abnormal behavior based: In this approach the firewall
will check for abnormal traffic pattern behavior.
Whenever the firewalls finds an abnormal behavior then
it will block that traffic or attack.

Fig.5:Working of web application firewalls[7]

B. Web application scanners

A web application security scanner is a program which
communicates with a web application through the web
front-end in order to identify potential security
vulnerabilities in the web application and architectural
weaknesses[4]. Scanners are basically used for testing of
vulnerabilities in a website. Wireshark, Nmap, Nessus,
accunetix are some of the examples of web application

scanner tools. In order to test web applications, a scanner
must support following features:

 Protocols Support: Scanner should support various
protocols like HTTP 1.1, HTTP 1.0, SSL, HTTP
Keepalive, HTTP Compression etc. in order to perform
various functions like handling sensitive information,
reusability of existing connection for multiple requests
etc.

 Authentication: Since Web Applications are usually
associated with authentication and authorization so,
scanner should support various authentication schemes
like basic, digest, HTML form based, single sign on etc.

 Crawling: It is a process used to describe the action
taken by a program as it browses from page to page on
a website. Crawler starts from the starting page and
traverse provided links until it reaches the destination.
Crawling is required to ensure that scanner is
aware of all the pages associated with a
website.

 Session Management: It is required basically to
perform web crawling. Session Management helps the
scanner to identify various web elements like cookies,
forms, links etc.

 Parsing: Scanner should be able to parse various
programming languages like HTML, javascript,
VBscript, XML etc in order to extract information from
the web content.

 Reporting: After performing all the above steps the
scanner should prepare a report of the collected
information so that the user can understand various
loopholes in the required application. Report should be
clear enough so that the vulnerabilities can be mitigated
from the web application.

1. Working of Web application scanners

 Vulnerability database: Scanner maintains a database
for various known vulnerabilities. When the scanning
process gets started, then user input is compared with
the database to determine the known vulnerability.

 Knowledge base: In knowledge base complete
information like type of protocol, proxy, scripting
language etc. is maintained. This information is used
by the scanner for deriving the result.

 Results: After scanning the targets, the scanning engine
will generate a result report which gives the complete
description of the attack.

Fig.5:Working of Web Application Scanner[8]

 Tanvi Dhingra | IJCSET(www.ijcset.net) | May 2015 | Vol 5, Issue 5,127-130

129

IV. CONCLUSION

This paper provides an exhaustive survey of architecture,
various security attacks existing in the web applications and
the impact of these attacks on various layers of web
application. Various security technologies like web
application firewalls and web application scanners have
been discussed i.e. how these technologies work to prevent
and detect various security attacks. Although these security
technologies can greatly prevent from various
vulnerabilities but still more focus should be given during
the development of a web applications, so that various
vulnerabilities can be prevented during the initial
development of website.

REFERENCES
[1] Abhishek Kumar Baranwal, Approaches to detect SQL injection and

XSS in web applications;April 2012
[2] Issac Museong Kim, Using Web Application Firewall to detect and

block common web application attacks;November17,2011
[3] Web Application Security,February 2008
[4] "Web Application Security Scanner Evaluation Criteria" Web

Application Security Consortium, 2009.
[5] Xiaowei Li and Yuan Xue, A Survey on Web Application Security
[6] Elizabeth Fong and Vadim Okun, Web Application Scanners:

Definitions and Functions
[7] http://www.acunetix.com/blog/news/ barracuda-networks-breached/
[8] https://users.cs.jmu.edu/tjadenbc/Bootcamp/ 7-VulnScanning.ppt/
[9] http://www.blackhat.com/ presentations/bh-europe-01/ jeremiah-

grossman/ bheurope-01-grossman.ppt
[10] http://www.imperva.com/resources/glossary/cookie_poisoning.html

 Tanvi Dhingra | IJCSET(www.ijcset.net) | May 2015 | Vol 5, Issue 5,127-130

130

