
Online Examination System using Command Line
Interface

Tushar B Kute , Tushar J. Surwade

Sandip Institute of Technology and Research Centre, Nashik

Abstract- We have to appear for various types of online
examination in our day-to-day life and while appearing for
examination, candidates are able to switch between many
different programs. One such program can be a Web
Browser or an Informative Document and may lead to
malpractice or copying. In order to avoid such malpractices,
we must ensure that other programs are inaccessible to the
appearing candidate. So, we present a system about an online
test module which works on the principle of RPC (Remote
Procedure Call) developed in C-language and is currently
implemented to work on Linux Operating System. The reason
behind choosing Linux as a platform is that it has many
advantages, one of them being that it avoids Windows
malwares up to 90%. In addition, Linux is an open source
operating system and it provides any user to deeply explore
its features. The system we are about to present executes on
terminal-only mode or CLI (Command Line Interface). It is
based on Client-Server architecture in which there is a server
and number of clients. The system also uses multithreading to
handle various clients simultaneously, where each client is
allotted to an individual candidate.

Keywords— Client, Command Line Interface, Examination,
Linux, Networking, RPC, Server, Terminal.

I. INTRODUCTION

In today’s world managers need faster assessment to bring
out best talents out of the crowd. To find such talents
various examinations are held in different ways, like written
tests, aptitudes, online tests. As all the specified exams can
take lot of time, except the online examinations, to deliver
results which may delay the decision-making process.
These online examinations are the best way to show results
faster. Generally, online examinations are not secure
because there is a possibility that the candidate may switch
among different programs and can search for solutions of
questions. So there is a need of a secured online
examination system which prevents application switching
and thus restricts the candidate from malpractice.
In order to fulfill this need of secured online examination
system, we have designed an online examination module
that does not allow application switching and is totally
based on Command Line Interface in Linux operating
system. Linux operating system provides a Terminal-Only
mode which does not support application switching. In case
the candidate knows how to close the terminal and access
another application then the examination process running in
the terminal ends there. Since, this online test module is
created in such a way that once the Console is switched
then the execution of test process terminates and the score
is declared, which denies any chance of resuming the test.
Our module consists of one server and multiple numbers of
clients. The server implements multithreading in such a

way that there is a thread that caters to a client connected to
it. Each thread provides response to the client's request.
Every client has two threads running in parallel, one for
keeping track of test timing and one for communicating
with the server. All these threads utilize RPC (Remote
Procedure Call) for communication among them.

II. CLIENT SERVER ARCHITECTURE

Client Server Architecture is a model in which a client
sends a request to the server and the server provides a
response that fulfills the request [3]. This architecture can
be implemented on a single machine but it can be more
efficiently used in a network by interconnecting programs
that are distributed across different locations. Usually, in
client server model, one server is activated and waits for the
request from the client. Multiple client programs can avail
the services of the server program concurrently. The client
provides a user interface to the user through which the user
requests for a service. This service is responded by the
server according to the availability of resources.

Fig. 1 Client-Server Architecture

Some of the advantages and disadvantages of using the
Client Server Architecture are as follows:
1) Centralized Resources: Redundant and inconsistent

data is prevented because the resources are managed
centrally by the server.

2) Scalable Network: We can modify the network by
adding or removing clients without affecting the
operation of the network.

3) Overloaded Servers: A centralized architecture makes
the server overloaded, because of the simultaneous
request of the different individual clients on the
network.

4) Server Failure: A failure in a client will not affect the
working of the network but a server crash will
definitely bring down the network.

Tushar B Kute et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6, 142-145

142

III. REMOTE PROCEDURE CALL

A remote procedure call (RPC) is when the procedure
being called and the calling procedure are in different
processes. Procedure calls are used for transferring
control and data inside a program running on one
computer. This same mechanism is extended for
transferring control and data over a communication
network, known as RPC[7]. When the Remote
Procedure is called, the calling program is paused and
the parameters for the procedure are passed over the
network to the program where the procedure will
execute, and then the remote procedure would execute.
When the remote procedure finishes execution, its
output or result is passed back to the calling function,
where the execution resumes in the calling program.[1]

Fig. 2 Remote Procedure Call Structure

A thread is a lightweight process that is; it shares the
process execution area and runs concurrently within the
process.
Suppose a thread T1 wants to communicate with thread
T2, then T1 needs to call a procedure of T2 which would
require passing of necessary parameters to T2 for calling
T2’s procedure. Thread T1 gets blocked until either
procedure of T2 returns some value to T1 or procedure of
T2 finishes execution. The thread T2 executes the
procedure called by T1. T1 gets unblocked after the
execution of procedure of T2 and continues its execution.
To process this communication, RPC needs five modules
that are, the user, the user-stub, the RPC package, the
server-stub, and the server. The RPC package contains
supporting instances for communication. Client machine
runs three modules user, user-stub, and an instance of RPC
package which is required for client-side communication.
Server machine also runs three modules server, server-
stubs and instance of RPC package which is also required
for server-side communication. User module requests for
the particular service from the user stubs. The user-stub
accumulates the required data and passes it to instance of
Client’s RPC package. The client instance of RPC package
passes this information to server’s instance of RPC
package. The Server instance passes all data packets to
server-stub and paused Client’s process completely. The
server stub invokes exactly the required procedure in the
server for the service required. After the response is
provided by the server, it is passed through server stub and

result of which client process was awaiting is passed to
them and they are released.

Fig.3 RPC Communication Structure

Advantages of using RPC [2]

1. You don’t need to worry about getting a unique port ID.
The server can bind to any port and register the port with
its RPC named server. The client will contact this name
server and request the port number that corresponds to the
program it needs.
2. The system is transport independent. This makes code
more portable to environments that may have different
transport providers in use.
3. Applications on the client only need to know one
transport address.
4. The function-call model can be used instead of the
send/receive (read/write) interface provided by sockets.

IV. MULTI-THREADING USING POSIX THREADS

Multiple strands of execution in a single program are
called threads. An alternate explanation is that a thread is a
sequence of control within a process [1]. A process can
have multiple threads executing in it. Multi-threading is a
type of execution model that allows multiple threads to
exist within a process such that they execute independently
but share the process resources. Threads within the same
process share the same address space. This allows threads
to read from and write to the same data structures and
variables, and also facilitates communication between
threads. A common example of multi-threading is that you
can have a word processor that prints a document using a
background thread, but at the same time another thread is
running that accepts user input, so that you can type up a
new document. If we were dealing with an application that
uses only one thread, then the application would only be
able to do one thing at a time – so printing and responding
to user input at the same time would not be possible in a
single threaded application.

Tushar B Kute et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6, 142-145

143

Fig. 4 Multi-threading in server processing

A. Resource Sharing between Threads [4]

Threads are sometimes called lightweight processes,
since a thread is "lighter weight" than a process. That is,
thread creation can be 10-100 times faster than process
creation. All threads within a process share the same
global memory. This makes the sharing of information
easy between the threads, but along with this simplicity
comes the problem of synchronization. But more than
just the global variables are shared.
 All threads within a process share: process

instructions, most data, open files (e.g., descriptors),
signal handlers and signal dispositions, current
working directory, and user and group IDs.

 Each thread has its own: thread ID, set of registers,
including program counter and stack pointer, stack
(for local variables and return addresses), errno,
signal mask, and priority.

B. Essential Thread Functions [4]

The POSIX i.e. Portable Operating System Interface for
UNIX provides a set of Library functions to have
multithreading in C programming and get compiled it with
–pthread option.
To perform some operations, threads between processes has
to communicate:
1) pthread_create:

 Whenever any process is created, it is initiated by
a main thread or initial thread and it is created
automatically without manual intervention. For
creating new threads to support the process, we need to
call pthread_create. For creating new thread
pthread_create is used in the following syntax:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr, void *
(*start_routine) (void *), void *arg);

The function pthread_create returns 0 if successful
creation of thread is done else it will return an error_no.
of unsuccessful creation of thread.

2) pthread_join:

 After the creation of thread, it must be specified to
wait for a thread to complete its execution. The
pthread_join function specifies the thread to wait until
the specified thread has completed execution.

Fig. 5 Thread joins

This function is used to join a new thread with a
terminated thread. The syntax for writing pthread_join
function is as follows:

int pthread_join(pthread_t thread, void
**retval);

After a successful call to pthread_join() the caller is
guaranteed that target thread has completed. The
function pthread_join returns 0 if successful and
returns error_no if unsuccessful in completely
execution in threads.

3) pthread_exit:

The function pthread_exit is used to terminate the
thread. This function terminates the calling thread and
returns a value via a parameter that is available to
another thread in the same process that calls
pthread_join.

 void pthread_exit(void *retval);

This function does not return any value to the calling thread

and is always successful.

V. ARCHITECTURE OF OUR SYSTEM

The overall working of the system is as described in the
following diagram:

Tushar B Kute et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6, 142-145

144

Fig. 6 Architecture of Online Examination System

using Command Line Interface

Let us go step by step and know the working of whole
system.
1) The architecture’s base model is built upon Client-

Server architecture.
2) All the questions, choices and correct answers will be

stored in server machine database.
3) Client will request for question from server through

RPC and server would provide a random question with
their choices from the database as response.

4) The client will select his option of answer and will be
sent to server back, and server will check for correct
answer.

5) In addition, clients will also have a timer thread
running in the background for the time limit of
examination. The server does not keep track of timers
of every client.

6) Candidates won’t be able to switch between the
programs because of terminal-only mode i.e. command
line interface.

7) Question request and response done during this
conversation is with the help of remote procedure call
where required data are passed as parameters for these
procedures within the network.

8) When the time is finished the examination will be
completed and correct questions marks will be send to
server database.

9) The termination of the examination can also be done
using Ctrl-C signal invocation on client machine.

VI. ADVANTAGES

 Fully secured system that will not allow students to
try any type of malpractice.

 Any number of nodes can be added or removed as
per the requirement dynamically.

 Any candidate trying to switch between the
programs will terminate the examination
automatically.

 All the question and answers are stored on the
server's system, so there is no issue of security
given to answers.

VII. DRAWBACKS

 Terminal based user interface is not much user-
friendly.

 Any network traffic would lead to undesirable high
latency in the network.

 Server failure will take down the whole
examination system.

VIII. CONCLUSION

By proposing this system, we can be assured that it fulfills
the needs of an online test module in day-to-day life.
Because of using RPC we provide a better level of integrity
and security to the data. The use of console mode restricts
the candidate from switching to other applications and
using them for malicious purpose. A timer thread executing
in the background of the client ensures that the examination
ends in stipulated time. Overall it satisfies almost every
need, with some additional feature which makes our system
better and different than the existing ones.

ACKNOWLEDGEMENTS

We thank our students of final year Dilip Jaiswal and
Guruprasad Iyer who helped us for preparation of the final
research paper.

REFERENCES
[1] UNIX Network Programming, 2nd ed., vol. 2, W. Richard Stevens.

[2] Neil Mathew, Richard Stones, “Beginning Linux Programming”,
Wrox Publications, 4th Edition, Wiley India Edition, ISBN-978-81-
265-1571-4

[3] Andrew Tanenbaum, Albert Woodhull, “The MINIX Book
Operating System Design and Implementation”, Eastern Economy
Edition, Prentice Hall of India, Third Edition, ISBN-978-81-203-
2955-3

[4] Achyut Godbole, “Operating Systems”, Second Edition, The
McGraw Hill Publishing Company, ISBN-13-978-0-07-059113

[5] Andrew D. Birrell, Bruce Jay Nelson, “Implementing Remote
Procedure Calls”, Xerox Palo Alto Research Center, ACM
Transactions on Computer Systems, Vol. 2, No. 1, February 1984,
Pages 39-59

[6] Andrew S. Tanenbaum, Robbert van Renesse, “A Critique of the
Remote Procedure Call Paradigm”, Dept. of Mathematics and
Computer Science, Vrije Universiteit

[7] Andrew D. Birrell, “Secure Communication Using Remote
Procedure Calls”, ACM Transactions on Computer Systems, Vol.
3, No. 1, February 1985, Pages 1-14.

[8] ‘Bits and Bytes’, Tushar B. Kute, Nitin Publications, Pune ISBN-
81-8447-05-9

Tushar B Kute et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6, 142-145

145

