
Comparative Study of Packet Sniffing tools for
HTTP Network Monitoring and Analyzing

Dr. Aruna Varanasi#1, P. Swathi*2
1Professor and Head, Computer Science and Engineering,

2Post Graduate Scholars, Computer Science and Engineering.

Sreenidhi Institute of Science and Technology, Ghatkesar, T.S, India.

Abstract— The use of computers has expeditiously
increased in the last few decades. Coupled with this has been
the exponential growth of the internet. Computers can now
exchange the large volumes of information. This has resulted
in an ever increasing need for tools and applications that can
monitor and analysing the network traffic.

Monitoring tools helps network administrators in
evaluating and diagnosing problems with servers, the network
wire, hubs and applications. But other than artificial
intelligence machines cannot recognize personalities and
content, they can also be used for communication and
exchange of information pertaining to unlawful activity. This
is why law enforcement agencies have shown increased
interest in network monitoring tools and application to
analyse the data. By monitoring and analysing the data,
flowing across the net can help detect and prevent crime. Such
monitoring tools and applications have an important role in
intelligence gathering.

In this paper explained related HTTP packet sniffing
tools such as wireshark, TCP DUMP, TCP Flow, and Colasoft
Capsa and their limitations of reconstructing HTTP web
pages by packet analysis & decode. I gave a brief introduction
of packet sniffing and how it is works and its components and
Challenges to extract HTTP web pages data.

Keywords—Networking, HTTP, Monitoring, Analyse,
Sniffing.

I. INTRODUCTION

Packet sniffing is the part of monitoring, capture of data
traffic on a computer network. Data sent between
computers over the internet or between any networks
holding the form of small chunks called packets, which are
routed to their target and assembled back into a complete
message. Packet sniffer is a program running in a network
attached Device that passively receives all data link layer
frames, which are passing through the device’s network
adapter. It is also known as Network or Protocol Analyzer
or Ethernet Sniffer [1].

The packet sniffer captures the data that is
addressed to other machines, saving it for later analysis.
Packet sniffers are mostly used by network to monitor
trouble shoot the network traffic. The packet sniffing
occurs by two ways either in promiscuous mode or monitor
mode. In promiscuous mode, NIC of this system capable to
receive over all packets in the form raw frame from
network, namely this system (involving its software) is a
sniffer. When a packet is received by a NIC, it first
compares the MAC address of the packet to its own. If the
MAC address matches, it accepts the packet otherwise
filters it. This is because of the network card discarding all

the packets that do not contain its own MAC address. An
operation mode called no promiscuous, which basically
means that each network card is minding its own business
and they only reading the frames, which are directed to it.
In order to captures the packets, NIC has to be set in the
promiscuous mode. Packet sniffers will do sniffing by
setting the NIC card of its own system to promiscuous
mode, and hence captures all packets even they are not
intended for it. So, packet sniffer captures the packets by
setting the NIC card into promiscuous mode, when the
packet arriving at the NIC, which are copied to the device
driver memory, and then passed to the kernel buffer from
where it is used by the user application.

Monitor mode (RFMON) enables a wireless NIC
to capture packets without associating (means some
authentication) with an access point. In monitor mode the
NIC does not care whether the CRC(Cyclic Redundancy
check) values are correct for packets captured in monitor
mode, so some packets that you see may in fact be
corrupted. For capture all traffic that the adapter can
receive, the adapter must be put into "monitor mode",
sometimes called "rfmon mode". In the monitor mode, the
driver will put the adapter in a mode where it will supply to
the host packets from all service sets.

II. SNIFFER COMPONENTS

Basic Components of sniffers are:-
A. The hardware: -

Most of the products work from standard network
adapters, though some require special hardware. By
use special hardware, you can analyze hardware faults
like CRC errors, voltage problems, cable programs,
"dribbles", "jitter", negotiation errors, and so forth.

B. Capture driver:-This is the very crucial part. It
captures the network traffic data from the wire, filters
it for the particular traffic you want, and then stores the
data in a buffer.

 C Buffer: - When the frames are captured from the
network, they are stored in a buffer.

 D Analysis & Decode: - This displays in the form
descriptive text of the contents of network traffic, so
that an analysis can figure out what is going on.

III.WORKING

In the network, when computer sends a data in the
form of packets. These packets are the chunks of data are
actually directed to the certain designated system. Every
sent data has a predefined destination point. So, all the data
are directly directed to a particular computer. Normally a

Aruna Varanasi et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12,406-409

406

system in a network is designed to receive the packets and
read only those data which are intended for it, the sniffing
process involves a cooperative effort between software and
hardware. Process can be broken down into three steps.

 Packet sniffer collects the packets in the form of
raw binary from the wire. Normally, this is done
in switched networks, if the selected network
interface will be promiscuous mode.

 Then captured binary data is converted into a
readable form.

 Analysis of the captured and converted data. After
captured network data, the packet sniffer takes
and verifies its protocol based on the information
extracted, and then begins its analysis of that
protocol's specific features [2].

IV. CHALLENGES TO EXTRACT HTTP WEB PAGES DATA

FROM PACKETS

For extracting HTTP web pages content, the tools has to
start from packets to TCP connections, from TCP
connections to individual HTTP transactions, from
individual HTTP transactions to HTTP requests and HTTP
responses and then transferred data. That is the process
involving extracting HTTP web pages data. This is most
complex to implement correctly [3].

HTTP uses TCP as its underlying transport protocol
causing the following issues:
 A TCP connection may be terminated at any point.
 On ending connection, some HTTP clients will close

the connection via RST others will send a FIN signal
as acknowledgement.

 Even in HTTP 1.0 one TCP connection can be used to
transfer multiple HTTP requests and responses. That
means TCP protocol is capable of handling more than
one HTTP transmission.

 Within a single TCP connection, it is not possible to
decide when a transfer has completed and when to start
the new meta information, because there will be no
indication of data transmission completed.

 Even an HTTP GET request may contain data.
 Demultiplexing of the TCP packets into HTTP
transactions makes dealing with lost packets,
retransmitted packets and reordered packets:

 Even containing the TCP open connection or close
connection events, the packet sniffer may lose any
packet. Therefore using a TCP connection as the
demultiplexing unit is not reliable.

 The sniffer may lose the packet containing the HTTP
header or response information and therefore has to
ignore the data associated with the request.

 Even packets containing the newline dividing the
HTTP response from the HTTP data can get lost,
therefore it difficult to decide when the HTTP meta
data ends and when the real data starts.

 If the packet containing the Web page data, but
sometimes it may not always arrive at the sniffer
location before the packet containing the HTTP
response.

V. HTTP PACKET SNIFFING TOOLS AND LIMITATIONS
Several tools exist those can capture packets from

network traffic, do some analysis & decoding , usually such
tools will put the network card of a computer into
promiscuous mode, this enables the computer to capture to
the overall traffic on that section of the network. Filtering
can be done based on the IP related header data present in
the packets , usually such filtering represents simple criteria
for the IP addresses and ports present in the packets. These
passive network sniffing programs have been developed for
either wired or wireless network measurement; the best-
known are TCPDUMP and WIRESHARK and TCPFLOW
and Colasoft Capsa. Each has certain limitations.

A. Wireshark:

On UNIX or Windows related systems, Wireshark (or
Ethereal if referring to older versions) is open source
software. It designed to provide network protocol analysing
utilities to its users. Wireshark is a (GUI) graphical user
interface network protocol analyser that provides a method
to interactively browse packet data from a live network or
for a previously saved capture file. Wireshark provides a
number of functionalities: 1) filter captured data based on
specified input, 2) organize packets together into complete
TCP streams to allow easier analysis of specific
connections, 3) read and write captured packets into a
variety of formats for compatibility with other applications
and 4) provide statistics, it capable to allow correlation
between packets and provide results from analysing
network protocols. These functionalities are extremely
useful, but can still potentially create difficulties in
identifying the actual content being viewed.
 Wireshark is extremely useful in technically
analysing data packets. It displays the data effectively and
uniformly in byte format, displaying and identifying
different byte fields in the data packets. However if a user
is not used to examining how packet headers worked,
formats of packets, or even the hexadecimal numbering
systems used here, then this data may appear as hard to
understand gibberish. Wireshark allows a user to assemble
all data into continuous TCP connections or streams.
 A TCP stream is a connection between two
computers between (target element and server) where
multiple transmissions take place. These streams may send
one file or many files between two computers maintaining
the TCP stream. To construct the TCP stream, the user
selects a packet and that enables the “Follow TCP Stream”
method. By following on the IP addresses and ports of each
connection, Wireshark identifies all packets, which are that
match the parameters of the selected packet to assemble
related data packets together and assembles. The TCP
stream format can be difficult to follow for new users. It
consist the initial HTTP packets that identify each file and
follows that with a textual representation of assembled data
packets in the TCP stream [4].
Limitations: TCP stream of wireshark provides a lot of
information to a technically oriented person, for example:
operating systems types, web browser, content (HTML or
JPEG), language and others. Unless the user possesses a
rudimentary understanding of HTTP packet headers,

Aruna Varanasi et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12,406-409

407

HTML language, CSS language and can understand what
an image looks like in byte format, however, it provides
little information about what the web page, and able to
reconstruct partial web pages after analysis but it require so
much of manual work.

B. Tcp Dump:

Tcpdump is an open source Unix/Linux compatible. In
windows it is called WinDump. It is command line
application designed to provide a dump or capture of data
traffic going over the network. Tcpdump provide prints out
a description of the contents of data packets captured on a
network interface. This dump can be supplemented with
certain types of network traffic or can be used to dump all
network traffic at the time of its operation. In addition to
capturing and filtering received packets, Tcpdump provides
a number of functionalities: 1) read and write captured
traffic to data files in Packet Capture (PCAP) format, 2)
filter packets based on specified parameters, and 3) print
limited or full data information from each packet based on
provided parameters. Tcpdump provides basic options,
which will be use for network analysis while outputting its
data to the screen or to data files [5].
Tcpdump provides a very basic view of the network traffic.
By default, it prints a summary of the packets that were
captured on the wire, without necessarily storing the data
that those packets contained. There are options to provide
more detailed information.

It contain the information such as captured time,
IP addresses in Domain Name System (DNS) address, and
port numbers, etc... The information is useful because it can
help to determine what computers were involved in
connections, general protocols (IP) and the time of packet
capture. However, it does not provide much useful
information about what a user is specifically looking at and
what that information looks like. When Tcpdump is used to
directly output packets to the hard drive, there is much
more detailed information provided in the file due to
following the PCAP format; otherwise Tcpdump returns
the packet headers and data.
Limitations: Tcpdump provides information that is more
directed toward the technically trained user. It does not
provide any method for a user to view a complete data file,
whether text based or visually, in order to determine what
the data content is. This can limit the usefulness when the
intent of network analysis is to determine and show
visually what the actual content of packets included.

C. Tcp Flow:

Tcpflow is an open source application. It designed to
provide a capture of traffic going over the viewable
network. It differs from Tcpdump in that it reconstructs the
actual data streams and stores each flow in a separate file
for later analysis. By extracting data from response packets
from a given web server to the client it construct. Then the
data written in to a file based on the IP addresses and ports
that are specified in this given TCP data stream.

Tcpflow allows a user to alternatively look at a live
capture of traffic or take previously captured data from
other applications such as Wireshark or Tcpdump. The

main requirement of captured data traffic is that it needs to
be in the PCAP format; this allows Tcpflow to read and
extract data from PCAP files and convert the packets into
the corresponding TCP data streams.

However, Tcpflow does not take the next step of
extracting the data into the specific files contained in the
data stream; by this I mean the images, HTML files, CSS
files or even saved documents are combined together into
one single file instead of saved individually to the hard
drive for easy access. The user can only look at this
information in its byte or text format [6].
Limitations: Tcpflow’s output consists of the HTTP
header information containing generic information such as
type (text/html), date, etc...before any data file. In addition
to the header information it contains the re-assembled data,
the HTML file, in a text format. This is difficult to view in
a browser because it is combined with the header
information and other data information included in this
TCP stream.

D. Colasoft Capsa:

Colasoft Capsa is a Network Analyzer, and it is a must-
have freeware for network administrators to monitor,
troubleshoot and diagnose their network. It is designed for
the purpose of personal and small business use. Capsa
Network Analyser Free Edition is an easy-to-use for
network monitoring and troubleshooting purposes. It
performs 24/7network monitoring, real-time packet
capturing, reliable network forensics, advanced protocol
analysing and in-depth packet decoding.
Limitation: A limitation of Colasoft Capsa is that, it works
only on windows platform and it does not show the total
web page, shows as separate links for individual files.
Capsa Free is a great combination of powerful monitoring,
in-depth packet decoding, reliable network diagnosing,
real-time alerting and thorough reporting ability, and it
provides you innovative solutions to numerous network
problems [7].

In this paper compared the packet sniffing tools
characteristics depending on attributes like supported OS,
open source, no of protocols supported, Supporting PCAP,
user interface type, multiple interface at single instance
feasibility, display protocol layers in OSI 7 layers, identify
the abnormal packets and forged data, reconstruct tcp
streams, decoding forms, and able to reconstruct the HTTP
web page data. The comparison shown in table 1

Table1 shows that none of the packet sniffer tool leads
all the parameters. The advantages and disadvantages
would help to develop a new packet sniffer application
which could hide all the disadvantages of the most used
packet sniffers and could outperform them on quantitative
and qualitative parameters [8].

Table 2 shows after summarizing the previous result to
extract the best tool against the given property for network
monitoring and analysis of packets.

In my point of view, Wireshark and Capsa are both very
powerful and popular packet sniffing tools for monitoring
and analysing. But Colasoft Capsa has more user friendly
interface and the data in an extremely easy-to-read manner.

Aruna Varanasi et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12,406-409

408

TABLE I CHARACTERSTIC COMPARISION OF WIRESHARK, TCP DUMP, TCP FLOW AND COLASOFT CAPSA

TABLE 2 CONCLUSION

VI. CONCLUSION

 There are a number of tools that allowed a user to
examine and analyse captured web traffic. Each of the
tools that I identified allows the user to examine
captured traffic at a low, technically oriented level by
directly examining bytes or text formats. This may
present a problem for network monitors or users to
reconstruct the visual oriented web page. So we need to
develop a software application to make it easier for
monitors and users to look at and analyse and decode
their captured network traffic.

REFERENCES
[1] S. Ansari, Rajeev S.G. and Chandrasekhar H.S, “Packet Sniffing:

Brief Introduction”, IEEE Potentials, Dec 2002- Jan 2003,
Volume: 21 Issue: 5, pp: 17 – 19.

[2] BoYu"Based on the network sniffer implement network
monitoring Computer Application and System
Modeling(ICCASM), 2010 International Conference on Volume:
7, 2010, Page(s): V7-1-V7-3(2010).

[3] B. A. Forouzan, “World Wide Web: HTTP,” TCP/IP Protocol
Suite, 3rd ed. New Yourk: McGraw Hill, 2006, ch. 22.

[4] Gerald Combs. (2008, Jan.). Wireshark Network Analyzer Man-
pages. Wireshark.org. [Online]. Available:
http://www.wireshark.org/docs/man- pages/wireshark.html

[5] V. Jacobson, C. Leres, and S. McCanne. (2008, Jan.). The
Tcpdump Manual Page. Lawrence Berkely Laboratory, Berkeley,
CA, Jun 1989.

[6] Elson, Jeremy. (2008, Jan.). The Tcpflow Manual Page.
Circlemud.org [Online]. Available:
http://www.circlemud.org/~jelson/software/tcpflow/tcpflow.1.ht
ml

[7] All about capsa [Online] Available www.colasoft.com
[8] C. Gandhi, G. Suri, R. P. Golyan, P. Saxena, and B. K. Saxina,

"Packet Sniffers- A Comparative Study", IJCNCS, paper 2308-
9830, p. 179-187.

S.No
Characteristics

Property Wireshark TCP Dump TCP Flow Colasoft Capsa

1 Supported OS Windows and Linux Linux Linux Windows

2 Open Source Yes Yes Yes No

3 No. Of Protocols Supported More than 1000 TCP/IP TCP/IP 300

4 Libpcap Based Yes Yes Yes No

5 User Interface GUI and CLI CLI CLI GUI

6
Multiple interfaces at single
instance

No No No Yes

7
Display protocol in OSI 7
layers

Yes No No Yes

8 Identify the abnormal packet
No (only creates

warning)
No No Yes

9
Identify the packets with forged
data

Yes No No Yes

10
Reconstructed TCP
communication

Yes(but not
formatted)

No Yes Yes

11
Decode protocol form (Hex,
ASCII, EBDIC)

Only Hex and ASCII
Only hex and

ASCII
Only ASCII Yes

12 Reconstruct HTTP web pages
No, Show actual
traffic content
individually

No
No, Show actual
traffic content in
individual files

No, Show Links for
traffic content
individually

S.NO
Conclusion

Property Best Tool

1 Supported OS Wireshark

2 User Interface Colasoft Capsa

3 No. Of Protocols Supported Wireshark

4 Multiple interfaces at single instance Colasoft Capsa

5 Display protocol in OSI 7 layers Colasoft Capsa

6 Identify the abnormal packet Colasoft Capsa

7 Identify the packets with forged data Colasoft Capsa

8 Decode protocol form (Hex, ASCII, EBDIC) Colasoft Capsa

Aruna Varanasi et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12,406-409

409

