
A Survey On Efficient Service Recommendation
On Large Data Clusters

Anumol Johnson
Computer Science and Engineering

Sahrdaya College of Engineering and Technology
Kodakara, India

Asst. Prof. Divya R
Computer Science and Engineering

Sahrdaya College of Engineering and Technology
Kodakara, India

Abstract- Recommendation system is an information filtering
technique, which provides users with information, which
he/she may be interested in. It helps in addressing the
information overload problem by retrieving the information
desired by the user based on his or similar users’ preferences
and interests. Service recommender systems proves to be a
valuable tool for providing appropriate recommendations to
users. Most of existing service recommender systems present
the same ratings and rankings of services to different users
without considering diverse users preferences, and therefore
fails to meet users personalized requirements. A Keyword-
Aware Service Recommendation method, named KASR has
been prposed to address the above challenges. It aims at
presenting a personalized service recommendation list and
recommending the most appropriate services to the users
effectively. Specifically, keywords are used to indicate users
preferences, and a user-based Collaborative Filtering
algorithm is adopted to generate appropriate
recommendations. To improve its scalability and efficiency in
big data environment, KASR is implemented on Hadoop, a
widely-adopted distributed computing platform using the
MapReduce parallel processing paradigm.

Keywords- Recommendation System, Hadoop, MapReduce,
Filtering Algorithms

I. INTRODUCTION

The increase in the number of services over the internet
has inundated service users with many choices. For
instance, Netflix.com has over 17,000 movies in its
selection, and Amazon. com has over 410,000 titles in its
Kindle store alone. In order to reduce the number of
choices users can decide on, recommendation systems are
necessary. Recommendation systems are attracting lots of
attention because they provide users with prior knowledge
of candidate choices to deal with information overload on
the Web.

Similar to most big data applications, the big data
tendancy also poses heavy impacts on service
recommender systems. With the growing number of
alternative services, effectively recommending services that
users preferred has become an important research issue.
Service recommender systems have been shown as
valuable tools to help users deal with services overload and
provide appropriate recommendations to them. Examples
of such practical applications include CDs, books,
webpages and various other products now use
recommender systems. Over the last decade, there has been
much research done both in industry and academia on
developing new approaches for service recommender
systems.

Collaborative filtering (CF) is one of the widely used
service recommendation techniques that bases its
recommendations on the ratings or behavior of other users
in the system . Intuitively, it assumes that, if users agree
about the quality or relevance of some service items, then
they will likely agree about other service items as well.
Existing memory-based CF techniques accomplish this by
computing the similarity between users or service items
using nonfunctional attribute values obtained at service
invocation. However using nonfunctional attribute values
of invoked services alone gives inaccurate similarity
measure. This is because, the invoked services are typically
based on different user personalized preferences on those
nonfunctional attributes.

Hadoop-MapReduce has become a powerful
Computation Model addresses to these problems. Hadoop
HDFS became more popular amongst all the Big Data tools
as it is open source with exible scalability, less total cost of
ownership and allows data stores of any form without the
need to have data types or schemas defined. Hadoop
MapReduce is a programming model and software
framework for writing applications that rapidly process vast
amounts of data in parallel on large clusters of compute
nodes. Map reduce is a software frame work introduced by
Google in 2004 to support distributed computing on large
data sets on clusters of computers. The original MapReduce
implementation by Google, as well as its open-source
counterpart, Hadoop, is aimed for parallelizing computing
in large clusters of commodity machines. MapReduce
model advantage is the easy scaling of data processing over
multiple computing nodes.

II. LITERATURE SURVEY

A "recommender system" is a fully functional software
system that applies at least one implementation to make
recommendations. In addition, recommender systems
feature several other components, such as a user interface, a
corpus of recommendation candidates, and an operator that
owns/runs the system. Some recommender systems also use
two or more recommendation approaches: CiteULike, a
service for discovering and managing scholarly references,
lets their users choose between two approaches.

The First recommender system was developed by
Goldberg, Nichols, OkiTerry in 1992. Tapestry was an
electronic messaging system that allowed users to either
rate messages ("good" or "bad") Recommender system as
defined by M. Deshpande and G. Karypis: A personalized
information filltering technology used to either predict

Anumol Johnson et al | IJCSET(www.ijcset.net) | February 2016 | Vol 6, Issue 2, 78-81

78

whether a particular user will like a particular item
(prediction problem) or to identify a set of N items that will
be of interest to a certain User. Recommender systems form
or work from a specific type of information filtering system
technique that attempts to recommend information items
(movies, TV program/show/episode, video on demand,
music, books, news, images, web pages, scientific literature
etc.) or social elements (e.g. people, events or groups) that
are likely to be of interest to the user. Typically, a
recommender system compares a user profile to some
reference characteristics, and seeks to predict the ’rating’ or
’preference’ that a user would give to an item they had not
yet considered. These characteristics may be from the
information item (the content-based approach) or the user’s
social environment (the collaborative filtering). The
recommender system apply data mining techniques and
prediction algorithms to predict users interest on
information ,product and services user .

Recommender systems apply techniques and
methodologies from another neighboring areas such as
Human computer interaction (HCI) or Information
Retrieval(IR). However, most of these systems bear in their
core an algorithm that can be understand as a particular
instance of a data mining (DM) technique. The process of
data mining consists of 3 steps carried out in succession:
Data Preprocessing, Data Analysis and Result
Interpretation. Examples of recommender system
areamazon.com,Reel.com,eBay,Levis,Moviefinder.com.
Recommender systems typically produce a list of
recommendations in one of two ways through
collaborative or content-based filtering. Collaborative
filtering approaches building a model from a user’s past
behavior (items previously purchased or selected and/or
numerical ratings given to those items) as well as similar
decisions made by other users. This model is then used to
predict items (or ratings for items) that the user may have
an interest in. Content-based filtering approaches utilize a
series of discrete characteristics of an item in order to
recommend additional items with similar properties. These
approaches are often combined.

Collaborative filtering (CF) is one of the widely
used service recommendation techniques that bases its
recommendations on the ratings or behavior of other users
in the system . Intuitively, it assumes that, if users agree
about the quality or relevance of some service items, then
they will likely agree about other service items as well.
Existing memory-based CF techniques accomplish this by
computing the similarity between users or service items
using nonfunctional attribute values obtained at service
invocation. However using nonfunctional attribute values
of invoked services alone gives inaccurate similarity
measure. This is because, the invoked services are typically
based on different user personalized preferences on those
nonfunctional attributes. The nonfunctional attribute values
observed by users during service invocation may not
necessarily represent their satisfaction for that service. For
this reason, disregarding the personalized preferences of
users in similarity computation creates a gap between users
nonfunctional attribute value and their satisfaction. Users
personalized preferences ensures that the nonfunctional

attribute closely aligns with their satisfaction, bridging that
gap and resulting in similarity values that accurately depicts
the similar relationship between two users. Intuitively, if a
nonfunctional attribute value used in similarity computation
fails to satisfy a user’s personalized preference it in turn
produces similarity results that are inaccurate. Thus, to
accurately recommend services, which are personalized to
users, it is necessary for recommendation systems to
incorporate users personalized preferences on
nonfunctional attributes when recommending services to an
active user.

One growing area of research in the area of
recommender systems is mobile recommender systems.
With the increasing ubiquity of internet-accessing smart
phones, it is now possible to offer personalized, context-
sensitive recommendations. This is a particularly difficult
area of research as mobile data is more complex than
recommender systems often have to deal with (it is
heterogeneous, noisy, requires spatial and temporal auto-
correlation, and has validation and generality problems).
Additionally, mobile recommender systems suffer from a
transplantation problem - recommendations may not apply
in all regions (for instance, it would be unwise to
recommend a recipe in an area where all of the ingredients
may not be available). One example of a mobile
recommender system is one that offers potentially
profitable driving routes for taxi drivers in a city. This
system takes as input data in the form of GPS traces of the
routes that taxi drivers took while working, which include
location (latitude and longitude), time stamps, and
operational status (with or without passengers). It then
recommends a list of pickup points along a route that will
lead to optimal occupancy times and profits. This type of
system is obviously location-dependent, and as it must
operate on a handheld or embedded device, the
computation and energy requirements must remain low.

Mobile recommendation systems have also been
successfully built using the Web of Data as a source for
structured information. A good example of such system is
SMARTMUSEUM The system uses semantic modelling,
information retrieval and machine learning techniques in
order to recommend contents matching user’s interest, even
when the evidence of user’s interests is initially vague and
based on heterogeneous information.[

III. METHOD

A. TF-IDF
TF-IDF, short for Term Frequency-Inverse Document

Frequency, is a numerical statistic that is intended to reflect
how important a word is to a document in a collection or
corpus. It is often used as a weighting factor in information
retrieval and text mining. The tf-idf value increases
proportionally to the number of times a word appears in the
document, but is offset by the frequency of the word in the
corpus, which helps to adjust for the fact that some words
appear more frequently in general. Variations of the tf-idf
weighting scheme are often used by search engines as a
central tool in scoring and ranking a document’s relevance
given a user query. tf-idf can be successfully used for stop-

Anumol Johnson et al | IJCSET(www.ijcset.net) | February 2016 | Vol 6, Issue 2, 78-81

79

words filtering in various subject fields including text
summarization and classification.

Term frequency: Suppose we have a set of English text
documents and wish to determine which document is most
relevant to the query "the brown cow". A simple way to
start out is by eliminating documents that do not contain all
three words "the", "brown", and "cow", but this still leaves
many documents. To further distinguish them, we might
count the number of times each term occurs in each
document and sum them all together; the number of times a
term occurs in a document is called its term frequency.
Inverse document frequency: However, because the term
"the" is so common, this will tend to incorrectly emphasize
documents which happen to use the word "the" more
frequently, without giving enough weight to the more
meaningful terms "brown" and "cow". The term "the" is not
a good keyword to distinguish relevant and non-relevant
documents and terms, unlike the less common words
"brown" and "cow". Hence an inverse document frequency
factor is incorporated which diminishes the weight of terms
that occur very frequently in the document set and
increases the weight of terms that occur rarely.

B. MapReduce

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key.

Figure 3.1: Execution Overview

Figure 3.1 shows the overall flow of a MapReduce

operation in our implementation. When the user program
calls the MapReduce function, the following sequence of
actions occurs (the numbered labels in Figure 3.1
correspond to the numbers in the list below): The
MapReduce library in the user program first splits the input
files into M pieces of typically 16 megabytes to 64
megabytes (MB) per piece (controllable by the user via an
optional parameter). It then starts up many copies of the

program on a cluster of machines. One of the copies of the
program is special - the master. The rest are workers that
are assigned work by the master. There are M map tasks
and R reduce tasks to assign. The master picks idle workers
and assigns each one a map task or a reduce task. A worker
who is assigned a map task reads the contents of the
corresponding input split. It parses key/value pairs out of
the input data and passes each pair to the user-defined Map
function. The intermediate key/value pairs produced by the
Map function are buffered in memory. Periodically, the
buffered pairs are written to local disk, partitioned into R
regions by the partitioning function. The locations of these
buffered pairs on the local disk are passed back to the
master, who is responsible for forwarding these locations to
the reduce workers. When a reduce worker is notified by
the master about these locations, it uses remote procedure
alls to read the buffered data from the local disks of the
map workers. When a reduce worker has read all
intermediate data, it sorts it by the intermediate keys so that
all occurrences of the same key are grouped together.

The sorting is needed because typically many
different keys map to the same reduce task. If the amount
of intermediate data is too large to t in memory, an external
sort is used. The reduce worker iterates over the sorted
intermediate data and for each unique intermediate key
encountered, it passes the key and the corresponding set of
intermediate values to the user’s Reduce function. The
output of the Reduce function is appended to a final output
file for this reduce partition. When all map tasks and
reduce tasks have been completed, the master wakes up the
user program. At this point, the MapReduce call in the user
program returns back to the user code. After successful
completion, the output of the mapreduce execution is
available in the R output files (one per reduce task, with file
names as specified by the user). Typically, users do not
need to combine these R output files into one file - they
often pass these files as input to another MapReduce call,
or use them from another distributed application that is able
to deal with input that is partitioned into multiple files.

IV. RESULT

Recommender systems made a significant progress over the
last decade when numerous content based, collaborative
and hybrid methods were proposed and several “industrial-
strength” systems have been developed. However, despite
all these advances, the current generation of recommender
systems surveyed in this paper still requires further
improvements to make recommendation methods more
effective in a broader range of applications. In this paper,
we reviewed various limitations of the current
recommendation methods and discussed possible
extensions that can provide better recommendation
capabilities. This paper presented the various techniques
and algorithm to build the recommender system.

ACKNOWLEDGMENT
I express my deepest thanks to “Miss. Divya R” the mentor of

the project for guiding and correcting various documents of mine
with attention and care. She has taken the pain to go through the
project and make necessary correction as and when needed. I also
extend my heartfelt thanks to my family and well wishers.

Anumol Johnson et al | IJCSET(www.ijcset.net) | February 2016 | Vol 6, Issue 2, 78-81

80

REFERENCES
[1] Witten I. H. and Frank I. Data Mining, Morgan Kaufman Publishers,

San Francisco, 2000.
[2] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom,

John Riedl, GroupLens: an open architecture for collaborative
filtering of netnews, Proceedings of the 1994 ACM conference on
Computer supported cooperative work, p.175-186, October 22-26,
1994, Chapel Hill, North Carolina, United States

[3] John S. Breese, David Heckerman and Carl Kadie. Empirical
analysis of predictive algorithms for collaborative filtering. In
Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence, pages 43-52, July 1998 [4] Deshpande, M.,
and Karypis, G. Item-based top-<i>n</i> recommendation
algorithms. ACM Trans. Inf. Syst. 22, 1 (2004), 143-177.

[4] Deshpande, M., and Karypis, G. Item-based top-<i>n</i>
recommendation algorithms. ACM Trans. Inf. Syst. 22, 1 (2004),
143-177.

[5] Breese, J., Heckerman, D., and Kadie, C., Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of
the Fourteenth Annual Conference on Uncertainty in Artificial
Intelligence, page 4352, 1998.

[6] Mukta kohar and Chhavi Rana, "Survey Paper on Recommendation
System", International Journal of Computer Science and Information
Technologies, Vol. 3 (2) , 2012,3460-3462

[7] G. Linden, B. Smith, and J. York, "Amazon.com Recommendations:
Item-to-Item Collaborative Filtering," IEEE Internet Computing, vol.
7, no. 1, pp. 76-80, Jan. 2003.

[8] Kenneth K. Fletcher and Xiaoqing (Frank) Liu Department of
Compute Science Missouri University of Science and Technology
Rolla, USA, "A Collaborative Filtering Method for Personalized
Preference-based Service Recommendatio " , 2015 IEEE
International Conference on Web Services.

[9] Jeffrey Dean and Sanjay Ghemawat, "MapReduce: Simplified Data
Processing on Large Clusters", Google, Inc.

[10] FengXu, "Service Recommendation with Case-based Reasoning",
Proceedings 0[2015 IEEE 12th International Conference on
Networking, Sensing and Control

Anumol Johnson et al | IJCSET(www.ijcset.net) | February 2016 | Vol 6, Issue 2, 78-81

81

