
Performance of Ten Software Development
Process Models with Principles

 S.Thulasi Krishna M.E., (Ph .D), Dr. S .Sreekanth, Ph.D

 Research scholar Professor,
 Rayalaseema University Dept of CSE
 Kurnool (dist.,) SITAMS,Chittoor(dt),
 Andhra Pradesh Andhra Pradesh

Abstract:- The software development life cycle is very
important in project development. A software process model
is the basic framework which gives a workflow from one stage
to the next, for developing any project in efficient manner.
Now days we have number of process models available but
which one is best model, identification is very difficult. So in
this research paper I proposed Ten software development
process model histories, phases, principles and performance of
software development chart. This chart explores clear
architecture, behavior of process model and applicability of
software development process model for various projects. This
is useful for developing projects in short period.

Keywords:process model, history, phases, process model
principles, performance of software development process chart.

INTRODUCTION

Software processes performed during software
Development and evolution are becoming rather complex
and recourse-intensive. They involve people who execute
actions with the primary goal to create quality software in
accordance with the previously set user requirements and
only structured, carefully guided and documented software
processes can lead to the stated goal. Constant monitoring
and improvement of software processes is therefore of a
significant interest for organizational performing software
development and maintenance. In order to improve the
process an objective description and evolution of the
existing process is needed.

A software development process, also known as a software
development life cycle (SDLC), is a structure imposed on
the development of a software product. It is often
considered as a subset of system development life cycle.
There are several models for such processes, each
describing approaches to a variety of activities that take
place during the process. Software Engineering (SE) is the
application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance
of software, and the study of these approaches.

Various processes and methodologies have been developed
over the last few decades to improve software quality, with
varying degrees of success. However, it is widely agreed
that no single approach that will prevent project overruns
and failures in all cases. Software projects that are large,
complicated, poorly-specified, and involve unfamiliar
aspects, are still particularly vulnerable to large,
unanticipated problems. A software development process is
a structure imposed on the development of a software
product. There are several models for such processes, each
describing approaches to a variety of tasks or activities that
take place during the process. It aims to be the standard that
defines all the tasks required for developing and
maintaining software. Software Engineering processes are
composed of many activities, notably the following:

• Requirements Analysis

• Specification

• Software architecture

• Implementation

• Testing

• Documentation

• Training and Support

• Maintenance

Software development teams, taking into account its goals
and the scale of a particular project, and have a number of
well-established software development models to choose
from. Therefore, even though there are number of models
each software Development Company adopts the best-
suited model, which facilitates the software development
process and boosts the productivity of its team members.
There are ten types of Model are: Waterfall model,
Incremental model, Prototype model, Spiral model, V-
model, Concurrent engineering model, Agile model, Build
and fix model.

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

161

1. HISTORY OF WATERFALL MODEL WITH PRINCIPLES

History of waterfall model: The formal description of the
method is often cited as an article published by Winston.
W. Royce in 1970.

Water fall model is a sequential development approach, in
which development is seen as flowing steadily downwards
though several phases

Phases

Requirement Analysis:

This is the first phase of development where all the
requirements Gathered and documented.

Design: In this phase all the system design is analyzed and
specified like hardware, system configuration and
architecture or the system.

Coding: In this phase all the development works are
performed and development components or units handed
over to testing team.

Test: Once the development completed, testing phase
starts and in this phase we test the each unit or component
and make sure the developed components are working as
expected. All the testing activities are performed in this
phase.

Maintenance: We always keep eye on the product and
provide the entire necessary bug or issue fixes if occurs in
production or reported by end users. Also time to time we
keep updated the product with new updates or patches if
developed or available.

The basic principles are:

1. Project is divided into sequential phases, with some
overlap and splash back acceptable between phases.

2. Emphasis is on planning, time schedules, target dates
budgets and implementation of an entire system at one
time.

3. Thighs control is maintained over the life of the project
via extensive written documentation, formal reviews,
and approval/ signoff by the user and information
technology management occurring at the end of most
phases before beginning the next phase. Written
documentation is an explicit deliverable of each phase.

4. Iterate – create a prototype, then the real system. repeat
each phases using new information gained and the
entire process at least once delivering the live system.

Table 1 : Performance of Waterfall Model

SL
NO

M.N
Model
Name

A.T
Architecture

A
Advantages

D
Disadvantages

APY S/M/L
Applicability

Small Medium
Large

CRF
Cost/Risk/
Flexibility

1 WATER
FALL
MODEL

Water fall model has divided into six
phases:
Requirement
Analysis
Design
Coding
Testing
Maintenance

- Simple and easy
Understand

--linear sequential
step by step
process

- Well understood
Milestones

- Clearly defined
Stages

- Provide a
template into
which Methods
for Analysis
Design Coding ,
testing.

- Easy to Manage
each phase has
specific
deliverable

- Risk of project
failure is slow

- Rigid design and
inflexible
procedure[1].

- Restricting back’s and
forth movement from
a stage to a former
one. When new
requirements surface
accommodating those
with existing ones
become difficult due
to restriction in
looping back to prior
stages .

- poor choice for
software development
projects where
requirements are not
well known or
understood by
development team.

-Not good for complex
projects that take
more time to
complete. The project
failure is high

- Difficult in
responding to changes
result to high amount
of risk and
uncertainly.

small projects.
-Un development
of database
related software
Example
commercial
projects

- In development
of E- commerce
Website (or)
portal

-In development
of network
protocol
Software

Low Budget

High-risk

Less Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

162

2. HISTORY OF INCREMENTAL DEVELOPMENT MODEL

WITH PRINCIPLES

History of Incremental Process Model:

Iterative and incremental, 1988, the article: The new
product development game “ by Takeuchig nonaka prosed
[2].

Different methods are acceptable for combing linear and
iterative systems development methodologies, with primary
objective of each being to reduce inherent project risk by
breaking a project into smaller segments and providing
more ease - of – change during the development process.

Phases

 Requirement Analysis: Requirement and specification
of the software are Collected

 Design: some high –end function are designed this stage

 Code: Coding of software is done during this stage

 Test: once the system is deployed , it goes through the
testing phase

The basic principles are:

1. A series of mini- Waterfall are completed for a small
part of a system, before proceeding to the next
increment.

2. Overall requirements are defined before proceeding for
evolutionary, Mini – waterfall development of
individual increments of a system.

3. The initial software concept, requirements analysis,
and design of architecture and system are defined via
waterfall, followed by iterative prototyping, which
culminates in installing the final prototyping a working
system.

Table 2. Performance of Incremental Development Model

SL
NO

M.N

Model
Name

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk/

Flexibility

2 Incremental
Development
Model

Incremental Process Model has 4- Phases

Analysis

Design

Code

Testing

- Parallel
development
can be
planned

-More flexible
and less
costly
requirements
-Progress
can be
measured

-Testing and
debugging
smaller
iteration is
easy.

-Risks are
identified
and resolved
during an
iteration and
each
iteration is
an easily
managed
milestone.

-It breaks
down the
problem into
sub problem
thus dealing
with reduced
complexity.

 -Each is rigid and do not
overlap each other.

-Each additional build has
to be incorporated into
the existing.

-Design errors become
part of system and
difficult to remove.

-An overhead in model is
rapid context switching
between various
activities. Each
iteration is followed by
an evaluation ensuring
that user requirements
have been met

Large
Project

High Cost

Low Risk

More

Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

163

3. HISTORY OF PROTOTYPE MODEL WITH PRINCIPLES

History of Prototype model:

The prototype model included in REMS (Regional
Economic Modeling System) is for the state of Massachus
etts, us in 1989.

Software prototyping is the development approach of
acting during Software development, the creation of
prototype i.e. incomplete versions of the software program
developed.

Phases:

Communication, Quick Plan Modeling, Quick Design:

Construction of Prototype, deployment, delivery and
feedback:

The Basic Principles are:

1. Not a Standard, complete development methodology,
but rather an approach to handle selected parts of a
larger an approach to handle selected parts of a larger,
more traditional development methodology (i.e.
incremental, spiral, or rapid application development
RAD)

2. Attempt to reduce inherent project risk by breaking a
project into smaller segments and providing more ease
of change during to development process.

3. User is involved though out the development process,
which increases the likelihood of user acceptance of
the final implementation.

4. Small – scale mock – ups of system are developed
following an iterative modification process until the
prototype evolves to meet the user’s requirements.

5. While most prototypes are developed with the
expectation that they will be discarded it is possible in
some cases to evolve from prototype to working
system.

Elaboration, from an overall concept of operation document
down to the coding of each individual program.

Each trip around the spiral traverses four basis quadrants:

1. Determine objectives alternatives, and constraints of
the iteration.

2. Evaluate alternative, identify and resolves risks.

3. Develop and verify deliverables from the Iteration.

4. Plan the next iteration.

Table 3. Performance of Proto type Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY
S/M/L

CRF

Cost/Risk/

3.

Prototy
pe
Model

Prototype Model Has Five Phases:

1. Communication

 2.Quick Plan

3. Modeling quick Design

4. Construction of prototype

 5.Deployment delivery and Feed back

-Users/

Customers own
requirements to
work will be faster
and efficient if
developers will
collaborate.

-It is created using user
feedback

-Cost effective
(development cost is
reduced)

-Increased system
development speed

-Potential risks
associated with
delivering of the
system can be
refined

-Includes lack of
information about
the exact number of
iteration and the
time period required
to upgrade the
prototype in order to
bring it up to the
satisfaction of the
user and customer.

-Not suitable for large
applications

-Structure of system can
be damaged since
may changes could
be made.

-Integration can be very
difficult

-The premature
prototype lack key
consideration like
security, fault
tolerance,
distributed
processing and other
such key issues[4].

Small

To

Medium

High Cost

Low Risk

More

Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

164

4. HISTORY OF SPIRAL MODEL WITH PRINCIPLE

History of Spiral Model:

In 1988 Barry Boehm published a formal software system
development “Spiral model”.

Spiral Model: The formal software system development
“spiral model”, which combines some key aspects of the
waterfall model and rapid prototyping methodologies in an
offer to combine advantages top-down and bottom-up
concepts. It provided emphasis in a key area many felt had
been neglected by another Methodology: deliberate
iterative risk analysis particularly suited to large – scale
complex systems.

Phases:

Planning Phase, Risk Analysis, Evaluation phase

The basic principles are:

1. Focus is a risk assessment and on minimizing project
risk by braking a project into smaller segments and
providing the opportunity to evaluate risks and Weight
consideration of project continuation throughout the
lifecycle.

2. “Each cycle involves a progression though the same
sequence of steps, for each part of the product and
each of its levels off or engineering is lesser
importance.

3. Project control involves prioritizing development and
defining delivery deadlines of “time boxes”.

4. If the project starts to slip, emphasis is a reducing
requirement to file the time box, not increasing the
deadline.

5. Generally includes point application design, where
users are intensely involved in system design, via
consensus building in either structured workshops, or
electronically facilitated interaction.

6. Active users involved are imperative.

7. Iteratively produces production software as proposed
to a throw way prototype.

8. Producer documentation necessary to facilitate future
development and maintenance.

9. Standard system analysis and design methods can be
fitted into this framework.

Table 4. Performance of Spiral Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk/

Flexibility

4 Spiral
Model

Spiral Model Has Four- Phases:

1. Planning

2.Risk Analysis

3.Engineering

4.Evaluation

-Changing requirement can
be accommodated

-Allow for extensive use of
prototype

-Requirements can be
captured more accurately.

-Estimates (budget, schedule
ect) becomes more realistic.

-It uses a stepwise
approaches development.

-Risks analysis
requirements high
expertise.

-Does not work
for smaller
projects.

-Made separately
for each
applications.

-Risks of not
meeting budget or
schedule.

-Complex and
difficult to follow
strictly.

-Applying already
development
product to needs
of a new
customer,
involves high risk
of making the
correct
product.[5].

Small to
Medium

High Cost

Risk

Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

165

5. HISTORY OF RAPID APPLICATION DEVELOPMENT

MODEL WITH PRINCIPLES

History of RAD:

The term first used to describe a software development
process introduced by James martin in 1991.

RAD is a software development methodology, which
favors iterative development and the rapid construction of
prototype intend of large amount of upfront planning. The
planning “of software development using RAD is
interleaved with writing the software itself the lack of
extensive pre-planning generally a allows software to be
written much faster, and makes it easier to change
requirement.

Phases:

Business modeling: The information flow is identified
between various business functions.
Data modeling: Information gathered from business
modeling is used to define data objects that are needed for
the business.
Process modeling: Data objects defined in data modeling
are converted to achieve the

Business information flow to achieve some specific
business objective. Description are identified and created

for CRUD of data objects.
Application generation: Automated tools are used to
convert process models into code and the actual system.
Testing and turnover: Test new components and all the
interfaces.

The basic principles of RAD are:

1. Key objectives is for fact development and delivery of
high quality system a relatively low investment cost.

2. Attempts to reduce inherent project risks by breaking a
project into smaller segments and providing more ease
of change during the development process.

3. Aims to produce high quality system quickly,
primarily via iterative prototyping (at any stage of
development), active users involvement, and
computerized development tools. These tools may
include (GUI) Graphical users Interface builders
Computer Aided Software Engineering (CASE) tools,
Database management system (DBMS), fourth
generation programming languages, code generation,
and object oriented techniques.

4. key emphasis is on fulfilling the business need, while a
basic understanding of the fundamental business
problem necessary to avoid solving the wrong
problems.

Performance of rapid application development model

Table 5. RAD Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk/
Flexibility

5 Rapid
Application
Development
Model

5- Phases

Business Modeling

Data Modeling

Process Modeling

Application Modeling

Testing And turn Over

 -Time to
delivery is less.

-Changing
requirements
can be
accommodated

-Progress can be
measured [6].

-Productivity with
fewer people in
short time.

-It makes an
overlap
reduction in
project risk.

 -Cost of product is
not known.

-It is difficult for
users to commit
the time required
for success of the
RAD process.

-Difficult to reuse
the module for
future system.

-Lack of scalability
high cost of
commitment by
the user.

Small to

Medium

Low Cost

Technical
risks are
low [9].

High
Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

166

6. HISTORY OF RATIONAL UNIFIED PROCESS MODEL WITH PRINCIPLES

History of Rational unified process model:

- In 1997, Jacobsen Booch Runbay – Umphase

- Rational unified process model is an iterative software
development process frame work

- Created by the rational software cooperation, a
division of IBM since 2003 [3].

- Rational unified process model is not a single concrete
prescriptive process but rather an adaptable process
frame work, intended to be tailored by the
development organizing and software teams that will
select the elements of the process that are appropriate
for their needs .

Phases:

1. Inception - The idea for the project is stated. The
development team determines if the project is
worth pursuing and what resources will be needed.

2. Elaboration - The project's architecture and
required resources are further evaluated.

Developers consider possible applications of the
software and costs associated with the
development.

3. Construction - The project is developed and
completed. The software is designed, written, and
tested.

4. Transition - The software is released to the public.
Final adjustments or updates are made based on
feedback from end user.

Principles are:

1. Develop iteratively, with risk as primary iteration
driver

2. Manage requirements

3. Employ a components – based Architecture

4. Model Software visually

5. Continuously verify quality

6. Control changes.

Table 6. Performance of Rational Unified Process Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk/

Flexibility

6 Rational
Unified
Process
Model

Rational Unified Process Model has Four Phases:

Inception

Elaboration

Contraction

Testing

- Process details are
expressed in
general terms,
allowing local
customization

- Heavy emphasis
documentation .

- Can embrace
incremental release.

- Evolutionary
approach can lead
to clean
implementation.

- Process details
are expressed in
general terms,
providing
minimal guidance
and requirement
local
customization .

- complex

- Heavy
documentation
can be expensive.

Small

Project

 Low Cost

Low Risk

Low
Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

167

7. HISTORY OF V-MODEL WITH PRINCIPLES

History of V-Model:

The concept of v-model was developed simultaneously, but
independently, in Germany and in the United States in the
late 1980’s

The German V-model was originally developed by IABG
in ottobrunn, near Munich, in co-operation with the feeder
office for defense technology and procurement in koblenz,
for the federal ministry of ministry of defense. It was taken
over by the federal Ministry of the interior for the civilian
public authorities’ domain in Sumner 1992 [10].

Phases:

Requirements, The high-level design (HLD),The low-
level design (LLD), The implementation, Coding .

V-Model principles:

-The following principles are inherent when the v model is
applied Large to Small – This principle stated
requirements, standards, Testing from a hierarchical
perspective.

Data/ process integrity ; This principles states that the
successful design of any solution requires the incorporation
and defined data and process elements must be identified
for each and every retirement.

Scalability: This principles states that the “V” concepts has
the flexibility to accommodate any IT project irrespective
of size, complexity or duration the “V” concept is
applicable to a large mainframe development project
applying a waterfall approach as it is to a web based
development project applying agile techniques.

Cross referencing: This principle states that there must be
a direct correlation between every requirement that has
been defined with a corresponding and verifiable testing
activity and result that substantiates that each and every
authorized requirement has been incorporated into the
completed application.

Tangible Documentation: This principles states that there
must be tangible documentation (electronic/ or hardcopy)
created as the project evolves.

Performance of V-Model model

Table 7 : V-Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk/

Flexibility

7 V-
Model

V-model has divided into Some Phases are:

1. Requirement Analysis

2. High level Design

3. Detailed Specification

4. Coding

5. Unit Testing

6. Integrated testing

7. Operational testing

- Testing activities
like planning
testing designing
happens well
before coding. This
saves a lot of time
hence higher
chance of success
over the waterfall
model.

- Proactive defect
tracking that is
defects are found at
early stage .

- Avoids the
downward flow of
the defects.

- Works well for
small projects
where requirements
are easily
understood[12].

- Very rapid and
least flexible

- Software is
developed during
the
implementation
phases, some
early prototypes
of the software
are produced.

- If any changes
happen in
midway, then the
test documents
along with
requirement
documents has to
be updated.

Small

Project

High Cost

High Risk

Less
Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

168

8. HISTORY OF CONCURRENT DEVELOPMENT MODEL

WITH PRINCIPLES

History of Concurrent Development Model

Sometimes called concurrent Engineering can be repeated
semantically as a series of frame work activities, software
Engineering and tasks, and their associated states.

The concurrent process model defines a series of events
that will trigger transition from a series of events that will
tiger transition from state to state for each of the software
engineering activities action or tasks.

Phases:

None: none state while initial communication was
completed.

Under development: the customer indicates that changes
in requirement must be made the modeling activity moves

from the under development state into the awaiting
changes state.

Awaiting changes: early in a project the communication
activity has completed its first iteration and exists in the
awaiting changes state.

Principles are:

The concurrent process model is applicable to all types of
software and provides an accurate picture of the current
state of a project rather than confining software engineering
activities.

Actions and tasks to a sequence of events, it define a
network of activities, action, or task on the network exited
simultaneous with other activities, action or tasks .

Event generated at one point in the process network trigger
transition among the state.

Performance of concurrent development process model

Table 8 : Concurrent Development Model

SL
NO

M.N

Model
Name

A.T

Architecture

A

Advantages

D

Disadvantages

APY S/M/L

Applicability
Small

Medium
Large

CRF

Cost/Risk

8

Concurrency
development
Model

Concurrent development Model has
divided some phases:

 1. Under development

 2. Awaiting changes

 3. Under revision

 4. Done

 5. Baselined

 6. Under revision

 7.under review

-It is can be represented
schematically as a series of
framework activities.

-Concurrency process model
that will trigger transition from
state to state for each of the
software engineering activities
and action or task.

-The concurrent process model
is application to all types of
software development and
process accurate picture of the
current state of a project.

-The SRS must be
continually
updated to reflect
changes.

-It requires
discipline to
avoiding too
many new
features too late in
the project .

Medium
Project

Low

Cost

Low Risk

Low
Flexibility

N

Under development

Awaiting Changes

Underrevision

Under review

Baselined

Done

Modeling activity

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

169

9 HISTORY OF AGILE DEVELOPMENT PROCESS MODEL

WITH PRINCIPLES

History of Agile Development Process Model

 Agile process model development by manifesto in year
2001.
“Agile software development “refers to groups of software
development methodologies based on iterative
development, where requirements and solutions evolve via
collaboration between self-organizing cruces functional
teams.

Principles:
1. Our highest priority is to satisfy the customer though

early and continuous delivery of valuable software.
2. Welcome changing requirement ever in development.

Agile process harness change for the customer’s
completive advantage.

3. Delivery working software frequently.

4. Business people and developers must work together
daily throughout the project

5. Build project around motivated individual
6. The most effective and effective method of conveying

information to and within a development team is face
to face communications.

7. Working software in the primary measures of progress.
8. Agile processes promote sustainable development this

sponsors, developers and user should be able to
maintenance constant place indefinitely.

9. Conation is a function to technical excellence and good
design enhance quality.

10. Simplicity the art of maximizing the amount of work
not done is essential.

11. The best architecture, requirements and design emerge
from self-organizing teams.

12. At regular, integrals the team reflects on how to
become more efficient then tunes and adjusts it
behavior accordingly.

Table 9: AGILE Development Process Model

10. HISTORY OF BUILD AND FIX MODEL WITH

PRINCIPLES

History of Build and Fix Model
Build and fix model developed by Boehm1988. In this most
simple model of software development, product with is
construct with minimal requirements and generally no
specifications nor is any attempt at design, and testing most
often neglected. This is representation of what is happening
in much Software development project.
Phases:
This model includes the following two phases.

Build:
In this phase, the software code is developed and passed on
to the nextphase.
Fix:
In this phase, the code developed in the build phase is made
error free. Also, in addition to the corrections to the code,
the code is modified according to the user's requirements.
Principles:
In this process, developers write code, fix the problems
they notice, and repeat. There is no guidance to help
developers converge to an appropriate result

Sl.No M N
AT

Architecture
A

Advantage
DA

Disadvantage
AP S/M/L CRF

9 AGILE
development
process
Model

- Customer
satisfaction by
rapid continuous
delivery of useful
software.

- Working software is
delivery frequently

- Face to face
conversation is the
best form of
communication.

- Close daily
cooperation
between business
people and
developers.

. - Continuous
attention to
technical
excellence and goal
design.

- Some software
deliveries,
especially the
large ones, it is
difficult to
accesses the
effort required
at the
beginning of
the software
life cycle .

- There is lack of
emphasis as
necessary
designing and
documentation

- The project can
easily get taken
off track if the
customer
representative
is not clear
what final
outcome that
they want.

Large

Project

High Cost

LowRisk

High

Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

170

Table 10 : Performance of Build and Fix Model

CONCLUSION:
After analysis of ten software process models, through the
various factors, it has been fund that the original
architecture, phases and principles, performance model.
Simulation can be used to identify process flaws
deficiencies and bottle necks, to estimate the impact of
potential changes to the process and to compare alternative
process models without putting new process into practice.
This paper is very useful to the developers.

REFERENCES:
[1] Utest : http://blog.utest.com/its-a- software-crisis/2011/04
[2] Model-Based system Architecture-page184

http://books.google.co.in/books?isbn=1118893646
[3]. IBM acquires rations http://en.wikipedia.org/wiki/rational-

unified_process
[4]. B.W. Bohme “ Anchoring the software process”, IEEE,IEEE

software, Vol- 13,Issues 4, july1996, PP.73-83.
www.testingexcellence.com/incremental-model/.

[5] The Spiral Model Advantages and disadvantages are available at:
www.tutorialpoint.com/sdlc/sdlc-spiral-model.htm

[6] R.S Preusman, “Software engineering, A practitioner’s approach” 5th
edition. Newyork: McGraw-Hill, 2001, pp 34.

[7] E.I. Mary, B.A.zimmer “The Evolutionary Development model for
Software”, Hewlett-Packard journal, Article 4, August 1996, PP, 1-8.

[8] asked.mark(2003-11-25)."rup in brief" IBM retrie
[9] Testingfreak.com/rad-model-software-testing-advantage-disadvntage
[10] v-model advantage disadvantage available at:

http:/en.wikipedia.org/wiki/v-model
[11]. the"v'model by comeron waston-project insight

www.projectinsight.net/../the-quot-v-quot-mdel by -cameron-waston
[12] V-Model advantages and disadvantages:

Istqbexamcertification.com/what-is-v-model-advantages-
disadvantages

[13]. Software engineering pages:
http://books.google.com.in/books?isbn=82122423779sangeethasabh
arwal-2008

AUTHORS

S.Thulasi Krishna received the B.Tech. Degree in Computer Science
and Engineering from Jawaharlal Nehru University, Hyderabad, India in
2005, M.E from Sathyabama University Chennai, and currently pursing
Ph.D in Rayalaseema University, Kurnool. Presently working as an
Associate Professor in Kuppam Engineering College. He is also a member
of International Association of Engineering.

Dr. S. Sreekanth has obtained Ph.D. Degree from S.V.University,
Tirupathi. Presently he is working as a Professor in the Department of
Computer Science and Engineering in Sreenivasa Institute of Technology
and Management Studies, Chittoor, Andhra Pradesh, with the experience
of 20 years. He has published 15 research papers both in national and
international journals of computer science.

SL
NO

M.N
Model
Name

A.T
Architecture

A
Advantages

D
Disadvantages

APY
S/M/L

CRF
Cost/Risk/

10 Build
and
Fix
Model

Build and Fix Model Has Three Phases
 1. Build First Version
 2. Modify Until Client is
 Satisfied
 3. Operations

-Requires less experience
to execute or manage
other than the ability to
program.
-Suitable for smaller
software.
-Requires less project
planning.

-No real means is
available for assessing
the program quality
and risks.
-Cost of using this
process model is high,
as it requires rework
until user requirement
are accomplished.
-Informal design of the
software as it involves
unplanned procedure.
-Maintenance of this
model is problematic
[13].

Small
Project

High Cost

High
Risk

High
Flexibility

S.Thulasi Krishna et al | IJCSET(www.ijcset.net) | May 2016 | Vol 6, Issue 5, 161-171

171

